LLM
/
Azure-OpenAI
copied
3 changed files with 226 additions and 1 deletions
@ -1,2 +1,135 @@ |
|||
# Azure-OpenAI |
|||
# OpenAI Chat Completion |
|||
|
|||
*author: David Wang* |
|||
|
|||
<br /> |
|||
|
|||
## Description |
|||
|
|||
A LLM operator generates answer given prompt in messages using a large language model or service. |
|||
This operator is implemented with Chat Completion method from [Azure OpenAI](https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/chatgpt?pivots=programming-language-chat-completions). |
|||
Please note you need an [OpenAI API key](https://platform.openai.com/account/api-keys) to access OpenAI. |
|||
|
|||
<br /> |
|||
|
|||
## Code Example |
|||
|
|||
Use the default model to continue the conversation from given messages. |
|||
|
|||
*Write a pipeline with explicit inputs/outputs name specifications:* |
|||
|
|||
```python |
|||
from towhee import pipe, ops |
|||
|
|||
p = ( |
|||
pipe.input('messages') |
|||
.map('messages', 'answer', ops.LLM.Azure_OpenAI(api_key=OPENAI_API_KEY, api_base=OPENAI_API_BASE)) |
|||
.output('messages', 'answer') |
|||
) |
|||
|
|||
messages=[ |
|||
{'question': 'Who won the world series in 2020?', 'answer': 'The Los Angeles Dodgers won the World Series in 2020.'}, |
|||
{'question': 'Where was it played?'} |
|||
] |
|||
answer = p(messages).get()[0] |
|||
``` |
|||
|
|||
*Write a [retrieval-augmented generation pipeline](https://towhee.io/tasks/detail/pipeline/retrieval-augmented-generation) with explicit inputs/outputs name specifications:* |
|||
|
|||
```python |
|||
from towhee import pipe, ops |
|||
|
|||
|
|||
temp = '''Use the following pieces of context to answer the question at the end. |
|||
If you don't know the answer, just say that you don't know, don't try to make up an answer. |
|||
|
|||
{context} |
|||
|
|||
Question: {question} |
|||
|
|||
Helpful Answer: |
|||
''' |
|||
|
|||
|
|||
docs = ['You can install towhee via command `pip install towhee`.'] |
|||
history = [ |
|||
('What is Towhee?', 'Towhee is an open-source machine learning pipeline that helps you encode your unstructured data into embeddings.') |
|||
] |
|||
question = 'How to install it?' |
|||
|
|||
p = ( |
|||
pipe.input('question', 'docs', 'history') |
|||
.map(('question', 'docs', 'history'), 'prompt', ops.prompt.template(temp, ['question', 'context'])) |
|||
.map('prompt', 'answer', |
|||
ops.LLM.Azure_OpenAI(api_key=OPENAI_API_KEY, api_base=OPENAI_API_BASE, temperature=0.5, max_tokens=100) |
|||
) |
|||
.output('answer') |
|||
) |
|||
|
|||
answer = p(question, docs, history).get()[0] |
|||
``` |
|||
|
|||
<br /> |
|||
|
|||
## Factory Constructor |
|||
|
|||
Create the operator via the following factory method: |
|||
|
|||
***LLM.OpenAI(model_name: str, api_key: str)*** |
|||
|
|||
**Parameters:** |
|||
|
|||
***model_name***: *str* |
|||
|
|||
The model name in string, defaults to 'gpt-3.5-turbo'. Supported model names: |
|||
- gpt-3.5-turbo |
|||
- gpt-3.5-turbo-16k |
|||
- gpt-3.5-turbo-instruct |
|||
- gpt-3.5-turbo-0613 |
|||
- gpt-3.5-turbo-16k-0613 |
|||
|
|||
***api_type***: *str=None* |
|||
|
|||
The OpenAI API type in string, defaults to None. |
|||
|
|||
***api_version***: *str=None* |
|||
|
|||
The OpenAI API version in string, defaults to None. |
|||
|
|||
***api_key***: *str=None* |
|||
|
|||
The OpenAI API key in string, defaults to None. |
|||
|
|||
***api_base***: *str=None* |
|||
|
|||
The OpenAI API base in string, defaults to None. |
|||
|
|||
***\*\*kwargs*** |
|||
|
|||
Other OpenAI parameters such as max_tokens, stream, temperature, etc. |
|||
|
|||
<br /> |
|||
|
|||
## Interface |
|||
|
|||
The operator takes a piece of text in string as input. |
|||
It returns answer in json. |
|||
|
|||
***\_\_call\_\_(txt)*** |
|||
|
|||
**Parameters:** |
|||
|
|||
***messages***: *list* |
|||
|
|||
​ A list of messages to set up chat. |
|||
Must be a list of dictionaries with key value from "system", "question", "answer". For example, [{"question": "a past question?", "answer": "a past answer."}, {"question": "current question?"}] |
|||
|
|||
**Returns**: |
|||
|
|||
*answer: str* |
|||
|
|||
​ The next answer generated by role "assistant". |
|||
|
|||
<br /> |
|||
|
|||
|
|||
|
@ -0,0 +1,5 @@ |
|||
from .azure_openai_chat import AzureOpenaiChat |
|||
|
|||
|
|||
def AzureOpenAI(*args, **kwargs): |
|||
return AzureOpenaiChat(*args, **kwargs) |
@ -0,0 +1,87 @@ |
|||
# Copyright 2021 Zilliz. All rights reserved. |
|||
# |
|||
# Licensed under the Apache License, Version 2.0 (the "License"); |
|||
# you may not use this file except in compliance with the License. |
|||
# You may obtain a copy of the License at |
|||
# |
|||
# http://www.apache.org/licenses/LICENSE-2.0 |
|||
# |
|||
# Unless required by applicable law or agreed to in writing, software |
|||
# distributed under the License is distributed on an "AS IS" BASIS, |
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|||
# See the License for the specific language governing permissions and |
|||
# limitations under the License. |
|||
|
|||
import os |
|||
from typing import List |
|||
|
|||
import openai |
|||
from towhee.operator.base import PyOperator |
|||
|
|||
class AzureOpenaiChat(PyOperator): |
|||
'''Wrapper of OpenAI Chat API''' |
|||
def __init__(self, |
|||
model_name: str = 'gpt-3.5-turbo', |
|||
api_type: str = 'azure', |
|||
api_version: str = '2023-07-01-preview', |
|||
api_key: str = None, |
|||
api_base = None, |
|||
**kwargs |
|||
): |
|||
openai.api_key = api_key or os.getenv('OPENAI_API_KEY') |
|||
openai.api_base = api_base or os.getenv('OPENAI_API_BASE') |
|||
self._model = model_name |
|||
self.stream = kwargs.pop('stream') if 'stream' in kwargs else False |
|||
self.kwargs = kwargs |
|||
|
|||
def __call__(self, messages: List[dict]): |
|||
messages = self.parse_inputs(messages) |
|||
response = openai.ChatCompletion.create( |
|||
model=self._model, |
|||
messages=messages, |
|||
n=1, |
|||
stream=self.stream, |
|||
**self.kwargs |
|||
) |
|||
if self.stream: |
|||
return self.stream_output(response) |
|||
else: |
|||
answer = response['choices'][0]['message']['content'] |
|||
return answer |
|||
|
|||
def parse_inputs(self, messages: List[dict]): |
|||
assert isinstance(messages, list), \ |
|||
'Inputs must be a list of dictionaries with keys from ["system", "question", "answer"].' |
|||
new_messages = [] |
|||
for m in messages: |
|||
if ('role' and 'content' in m) and (m['role'] in ['system', 'assistant', 'user']): |
|||
new_messages.append(m) |
|||
else: |
|||
for k, v in m.items(): |
|||
if k == 'question': |
|||
new_m = {'role': 'user', 'content': v} |
|||
elif k == 'answer': |
|||
new_m = {'role': 'assistant', 'content': v} |
|||
elif k == 'system': |
|||
new_m = {'role': 'system', 'content': v} |
|||
else: |
|||
raise KeyError('Invalid message key: only accept key value from ["system", "question", "answer"].') |
|||
new_messages.append(new_m) |
|||
return new_messages |
|||
|
|||
def stream_output(self, response): |
|||
for resp in response: |
|||
yield resp['choices'][0]['delta'] |
|||
|
|||
@staticmethod |
|||
def supported_model_names(): |
|||
model_list = [ |
|||
'gpt-3.5-turbo', |
|||
'gpt-3.5-turbo-16k', |
|||
'gpt-3.5-turbo-instruct', |
|||
'gpt-3.5-turbo-0613', |
|||
'gpt-3.5-turbo-16k-0613' |
|||
] |
|||
model_list.sort() |
|||
return model_list |
|||
|
Loading…
Reference in new issue