4 changed files with 177 additions and 1 deletions
@ -1,2 +1,85 @@ |
|||
# Ernie |
|||
# 文心一言 |
|||
|
|||
*author: Jael* |
|||
|
|||
<br /> |
|||
|
|||
## Description |
|||
|
|||
A LLM operator generates answer given prompt in messages using a large language model or service. |
|||
This operator is implemented with Ernie Bot from [Baidu](https://cloud.baidu.com/wenxin.html). |
|||
Please note you will need [Ernie API key & Secret key](https://ai.baidu.com/ai-doc/REFERENCE/Lkru0zoz4) to access the service. |
|||
|
|||
<br /> |
|||
|
|||
## Code Example |
|||
|
|||
Use the default model to continue the conversation from given messages. |
|||
|
|||
*Write a pipeline with explicit inputs/outputs name specifications:* |
|||
|
|||
```python |
|||
from towhee import pipe, ops |
|||
|
|||
p = ( |
|||
pipe.input('messages') |
|||
.map('messages', 'answer', ops.LLM.Ernie(api_key=ERNIE_API_KEY, secret_key=ERNIE_SECRET_KEY)) |
|||
.output('messages', 'answer') |
|||
) |
|||
|
|||
messages=[ |
|||
{'question': 'Zilliz Cloud 是什么?', 'answer': 'Zilliz Cloud 是一种全托管的向量检索服务。'}, |
|||
{'question': '它和 Milvus 的关系是什么?'} |
|||
] |
|||
answer = p(messages).get()[0] |
|||
``` |
|||
|
|||
<br /> |
|||
|
|||
## Factory Constructor |
|||
|
|||
Create the operator via the following factory method: |
|||
|
|||
***LLM.Ernie(api_key: str, secret_key: str)*** |
|||
|
|||
**Parameters:** |
|||
|
|||
|
|||
***api_key***: *str=None* |
|||
|
|||
The Ernie API key in string, defaults to None. If None, it will use the environment variable `ERNIE_API_KEY`. |
|||
|
|||
***secret_key***: *str=None* |
|||
|
|||
The Ernie Secret key in string, defaults to None. If None, it will use the environment variable `ERNIE_SECRET_KEY`. |
|||
|
|||
***\*\*kwargs*** |
|||
|
|||
Other OpenAI parameters such as temperature, etc. |
|||
|
|||
<br /> |
|||
|
|||
## Interface |
|||
|
|||
The operator takes a piece of text in string as input. |
|||
It returns answer in json. |
|||
|
|||
***\_\_call\_\_(txt)*** |
|||
|
|||
**Parameters:** |
|||
|
|||
***messages***: *list* |
|||
|
|||
A list of messages to set up chat. |
|||
Must be a list of dictionaries with key value from "question", "answer". For example, [{"question": "a past question?", "answer": "a past answer."}, {"question": "current question?"}]. |
|||
It also accepts the orignal Ernie message format like [{"role": "user", "content": "a question?"}, {"role": "assistant", "content": "an answer."}] |
|||
|
|||
**Returns**: |
|||
|
|||
*answer: str* |
|||
|
|||
The next answer generated by role "assistant". |
|||
|
|||
<br /> |
|||
|
|||
|
|||
|
@ -0,0 +1,5 @@ |
|||
from .ernie_chat import ErnieChat |
|||
|
|||
|
|||
def Ernie(*args, **kwargs): |
|||
return ErnieChat(*args, **kwargs) |
@ -0,0 +1,87 @@ |
|||
# Copyright 2021 Zilliz. All rights reserved. |
|||
# |
|||
# Licensed under the Apache License, Version 2.0 (the "License"); |
|||
# you may not use this file except in compliance with the License. |
|||
# You may obtain a copy of the License at |
|||
# |
|||
# http://www.apache.org/licenses/LICENSE-2.0 |
|||
# |
|||
# Unless required by applicable law or agreed to in writing, software |
|||
# distributed under the License is distributed on an "AS IS" BASIS, |
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|||
# See the License for the specific language governing permissions and |
|||
# limitations under the License. |
|||
|
|||
import os |
|||
import requests |
|||
import json |
|||
from typing import List |
|||
|
|||
from towhee.operator.base import PyOperator |
|||
|
|||
|
|||
class ErnieChat(PyOperator): |
|||
'''Wrapper of OpenAI Chat API''' |
|||
def __init__(self, |
|||
api_key: str = None, |
|||
secret_key: str = None, |
|||
**kwargs |
|||
): |
|||
self.api_key = api_key or os.getenv('ERNIE_API_KEY') |
|||
self.secret_key = secret_key or os.getenv('ERNIE_SECRET_KEY') |
|||
self.kwargs = kwargs |
|||
|
|||
try: |
|||
self.access_token = self.get_access_token(api_key=self.api_key, secret_key=self.secret_key) |
|||
except Exception as e: |
|||
raise RuntimeError(f'Failed to get access token: {e}') |
|||
self.url = 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/completions?access_token=' \ |
|||
+ self.access_token |
|||
|
|||
def __call__(self, messages: List[dict]): |
|||
messages = self.parse_inputs(messages) |
|||
self.kwargs['messages'] = messages |
|||
payload = json.dumps(self.kwargs) |
|||
headers = { |
|||
'Content-Type': 'application/json' |
|||
} |
|||
|
|||
response = requests.request('POST', self.url, headers=headers, data=payload) |
|||
|
|||
# if self.kwargs.get('stream', False): |
|||
# return self.stream_output(response) |
|||
|
|||
answer = response.json()['result'] |
|||
return answer |
|||
|
|||
def parse_inputs(self, messages: List[dict]): |
|||
assert isinstance(messages, list), \ |
|||
'Inputs must be a list of dictionaries with keys from ["question", "answer"] or ["role", "content"].' |
|||
new_messages = [] |
|||
for m in messages: |
|||
if ('role' and 'content' in m) and (m['role'] in ['assistant', 'user']): |
|||
new_messages.append(m) |
|||
else: |
|||
for k, v in m.items(): |
|||
if k == 'question': |
|||
new_m = {'role': 'user', 'content': v} |
|||
elif k == 'answer': |
|||
new_m = {'role': 'assistant', 'content': v} |
|||
else: |
|||
'Invalid message key: only accept key value from ["question", "answer"].' |
|||
new_messages.append(new_m) |
|||
return new_messages |
|||
|
|||
def stream_output(self, response): |
|||
# todo |
|||
pass |
|||
|
|||
@staticmethod |
|||
def get_access_token(api_key, secret_key): |
|||
url = 'https://aip.baidubce.com/oauth/2.0/token' |
|||
params = { |
|||
'grant_type': 'client_credentials', |
|||
'client_id': api_key, |
|||
'client_secret': secret_key |
|||
} |
|||
return str(requests.post(url, params=params).json().get('access_token')) |
@ -0,0 +1 @@ |
|||
requests |
Loading…
Reference in new issue