diff --git a/README.md b/README.md index 8c339c2..47a7a7c 100644 --- a/README.md +++ b/README.md @@ -18,36 +18,23 @@ and maps vectors with labels provided by datasets used for pre-training. Use the pretrained ActionClip model to classify and generate a vector for the given video path './archery.mp4' ([download](https://dl.fbaipublicfiles.com/pytorchvideo/projects/archery.mp4)). - *Write the pipeline in simplified style*: +*Write a pipeline with explicit inputs/outputs name specifications:* ```python -import towhee - -( - towhee.glob('./archery.mp4') - .video_decode.ffmpeg() - .action_classification.actionclip(model_name='clip_vit_b16') - .show() +from towhee.dc2 import pipe, ops, DataCollection + +p = ( + pipe.input('path') + .map('path', 'frames', ops.video_decode.ffmpeg()) + .map('frames', ('labels', 'scores', 'features'), + ops.action_classification.actionclip(model_name='clip_vit_b16')) + .output('path', 'labels', 'scores', 'features') ) -``` - - -*Write a same pipeline with explicit inputs/outputs name specifications:* - -```python -import towhee - -( - towhee.glob['path']('./archery.mp4') - .video_decode.ffmpeg['path', 'frames']() - .action_classification.actionclip['frames', ('labels', 'scores', 'features')](model_name='clip_vit_b16') - .select['path', 'labels', 'scores', 'features']() - .show(formatter={'path': 'video_path'}) -) +DataCollection(p('./archery.mp4')).show() ``` - +
diff --git a/result.png b/result.png new file mode 100644 index 0000000..5bf37de Binary files /dev/null and b/result.png differ diff --git a/result1.png b/result1.png deleted file mode 100644 index e56d125..0000000 Binary files a/result1.png and /dev/null differ diff --git a/result2.png b/result2.png deleted file mode 100644 index 98a3040..0000000 Binary files a/result2.png and /dev/null differ