diff --git a/README.md b/README.md index 15d3d25..872bfa6 100644 --- a/README.md +++ b/README.md @@ -18,38 +18,23 @@ and maps vectors with labels provided by datasets used for pre-training. Use the pretrained Movinet model to classify and generate a vector for the given video path './jumpingjack.gif' ([download](https://github.com/tensorflow/models/raw/f8af2291cced43fc9f1d9b41ddbf772ae7b0d7d2/official/projects/movinet/files/jumpingjack.gif)). - *Write the pipeline in simplified style*: +*Write a pipeline with explicit inputs/outputs name specifications*: -- Predict labels (default): ```python -import towhee - -( - towhee.glob('./jumpingjack.gif') - .video_decode.ffmpeg() - .action_classification.movinet( - model_name='movineta0', topk=5) - .show() +from towhee.dc2 import pipe, ops, DataCollection + +p = ( + pipe.input('path') + .map('path', 'frames', ops.video_decode.ffmpeg()) + .map('frames', ('labels', 'scores', 'features'), + ops.action_classification.movinet(model_name='movineta0')) + .output('path', 'labels', 'scores', 'features') ) -``` - - -*Write a same pipeline with explicit inputs/outputs name specifications*: -```python -import towhee - -( - towhee.glob['path']('./jumpingjack.gif') - .video_decode.ffmpeg['path', 'frames']() - .action_classification.movinet['frames', ('labels', 'scores', 'features')]( - model_name='movineta0') - .select['path', 'labels', 'scores', 'features']() - .show(formatter={'path': 'video_path'}) -) +DataCollection(p('./jumpingjack.gif')).show() ``` - +
diff --git a/result.png b/result.png new file mode 100644 index 0000000..450b730 Binary files /dev/null and b/result.png differ diff --git a/result1.png b/result1.png deleted file mode 100644 index 81320aa..0000000 Binary files a/result1.png and /dev/null differ diff --git a/result2.png b/result2.png deleted file mode 100644 index fb07273..0000000 Binary files a/result2.png and /dev/null differ