diff --git a/archery.mp4 b/archery.mp4 new file mode 100644 index 0000000..4a724d6 Binary files /dev/null and b/archery.mp4 differ diff --git a/movinet.py b/movinet.py index 302837a..48d66b1 100644 --- a/movinet.py +++ b/movinet.py @@ -41,14 +41,14 @@ class Movinet(NNOperator): def __init__(self, model_name: str = 'movineta0', framework: str = 'pytorch', - input_type: str = 'video', + casual: str = False, skip_preprocess: bool = False, classmap: dict = None, topk: int = 5, ): super().__init__(framework=framework) self.model_name = model_name - self.input_type = input_type + self.casual = casual self.skip_preprocess = skip_preprocess self.topk = topk self.dataset_name = 'kinetics_600' @@ -65,7 +65,7 @@ class Movinet(NNOperator): else: self.classmap = classmap self.device = 'cuda' if torch.cuda.is_available() else 'cpu' - self.model = create_model(model_name=model_name, pretrained=True, device=self.device) + self.model = create_model(model_name=model_name, pretrained=True, casual=self.casual, device=self.device) self.input_mean=[0.485, 0.456, 0.406] self.input_std=[0.229, 0.224, 0.225] self.transform_cfgs = get_configs( @@ -107,7 +107,7 @@ class Movinet(NNOperator): feats = self.model.forward_features(inputs) features = feats.to('cpu').squeeze(0).detach().numpy() - outs = self.model.head(feats, input_type = self.input_type) + outs = self.model.head(feats) post_act = torch.nn.Softmax(dim=1) preds = post_act(outs) pred_scores, pred_classes = preds.topk(k=self.topk)