logo
Browse Source

Add files

Signed-off-by: Jael Gu <mengjia.gu@zilliz.com>
main
Jael Gu 3 years ago
parent
commit
257075a76b
  1. 112
      README.md
  2. 19
      __init__.py
  3. 1
      kinetics_400.json
  4. 179
      pytorchvideo.py
  5. 4
      requirements.txt

112
README.md

@ -1,2 +1,112 @@
# pytorchvideo
# Video Classification with Pytorchvideo
*Author: [Jael Gu](https://github.com/jaelgu)*
<br />
## Description
A video classification operator is able to predict labels (and corresponding scores)
and extracts features given the input video.
It preprocesses video frames with video transforms and then loads pre-trained models by model names.
This operator has implemented pre-trained models from [Pytorchvideo](https://github.com/facebookresearch/pytorchvideo)
and maps vectors with labels provided by the [Kinetics400 Dataset](https://deepmind.com/research/open-source/kinetics).
<br />
## Code Example
Use the pretrained SLOWFAST model ('slowfast_r50')
to classify and generate a vector for the given video path './archery.mp4' ([download](https://dl.fbaipublicfiles.com/pytorchvideo/projects/archery.mp4)).
*Write the pipeline in simplified style*:
```python
import towhee
(
towhee.glob('./archery.mp4')
.video_decode.ffmpeg()
.video_classification.pytorchvideo(model_name='slowfast_r50')
.to_list()
)
```
*Write a same pipeline with explicit inputs/outputs name specifications:*
```python
import towhee
(
towhee.glob['path']('./archery.mp4')
.video_decode.ffmpeg['path', 'frames']()
.video_classification.pytorchvideo['frames', ('labels', 'scores', 'features')](
model_name='slowfast_r50')
.select['labels', 'scores', 'features']()
.show()
)
```
<br />
## Factory Constructor
Create the operator via the following factory method
***video_classification.pytorchvideo(
model_name='x3d_xs', skip_preprocess=False, classmap=None, topk=5)***
**Parameters:**
***model_name***: *str*
​ The name of pre-trained model from pytorchvideo hub.
​ Supported model names:
- c2d_r50
- i3d_r50
- slow_r50
- slowfast_r50
- slowfast_r101
- x3d_xs
- x3d_s
- x3d_m
- mvit_base_16x4
- mvit_base_32x3
***skip_preprocess***: *bool*
​ Flag to control whether to skip UniformTemporalSubsample in video transforms, defaults to False.
If set to True, the step of UniformTemporalSubsample will be skipped.
In this case, the user should guarantee that all the input video frames are already reprocessed properly,
and thus can be fed to model directly.
***classmap***: *Dict[str: int]*:
​ Dictionary that maps class names to one hot vectors.
If not given, the operator will load the default class map dictionary.
***topk***: *int*
​ The topk labels & scores to present in result. The default value is 5.
## Interface
Given a video data, the video classification operator predicts a list of class labels
and generates a video embedding in numpy.ndarray.
**Parameters:**
***frames***: *List[VideoFrame]*
​ Video frames in towhee.types.video_frame.VideoFrame.
**Returns**:
***labels, scores, features***: *Tuple(List[str], List[float], numpy.ndarray)*
- labels: predicted class names.
- scores: possibility scores ranking from high to low corresponding to predicted labels.
- features: a video embedding in shape of (num_features,) representing features extracted by model.

19
__init__.py

@ -0,0 +1,19 @@
# Copyright 2021 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .pytorchvideo import PytorchVideo
def pytorchvideo(**kwargs):
return PytorchVideo(**kwargs)

1
kinetics_400.json

File diff suppressed because one or more lines are too long

179
pytorchvideo.py

@ -0,0 +1,179 @@
import logging
import os
import json
from pathlib import Path
from typing import List, Union, Iterable, Callable
import torch
from torch import nn
import numpy
from towhee import register
from towhee.types import VideoFrame
from towhee.operator.base import NNOperator
from towhee.models.utils.video_transforms import transform_video
log = logging.getLogger()
@register(output_schema=['labels', 'scores', 'features'])
class PytorchVideo(NNOperator):
"""
Generate a list of class labels given a video input data.
Default labels are from [Kinetics400 Dataset](https://deepmind.com/research/open-source/kinetics).
Args:
model_name (`str`):
The pretrained model name from torch hub.
Supported model names:
- c2d_r50
- i3d_r50
- slow_r50
- slowfast_r50
- slowfast_r101
- x3d_xs
- x3d_s
- x3d_m
- mvit_base_16x4
- mvit_base_32x3
skip_preprocess (`str`):
Flag to skip video transforms.
classmap (`str=None`):
Path of the json file to match class names.
topk (`int=5`):
The number of classification labels to be returned (ordered by possibility from high to low).
"""
def __init__(
self,
model_name: str = 'x3d_xs',
framework: str = 'pytorch',
skip_preprocess: bool = False,
classmap: str = None,
topk: int = 5,
) -> None:
super().__init__(framework=framework)
self.model_name = model_name
self.skip_preprocess = skip_preprocess
self.topk = topk
if classmap is None:
class_file = os.path.join(str(Path(__file__).parent), 'kinetics_400.json')
with open(class_file, 'r') as f:
kinetics_classes = json.load(f)
self.classmap = {}
for k, v in kinetics_classes.items():
self.classmap[v] = str(k).replace('"', '')
else:
self.classmap = classmap
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.model = torch.hub.load('facebookresearch/pytorchvideo', model=model_name, pretrained=True)
self.model.eval()
self.model.to(self.device)
def __call__(self, frames: List[VideoFrame]):
"""
Args:
frames (`List[VideoFrame]`):
Video frames in towhee.types.video_frame.VideoFrame.
Returns:
labels, scores:
A tuple of lists (labels, scores).
video embedding:
A video embedding in numpy.ndarray.
"""
# Convert list of towhee.types.Image to numpy.ndarray in float32
video = numpy.stack([img.astype(numpy.float32) / 255. for img in frames], axis=0)
assert len(video.shape) == 4
video = video.transpose(3, 0, 1, 2) # twhc -> ctwh
if self.skip_preprocess:
data = transform_video(
video=video,
model_name=self.model_name,
num_frames=None
)
else:
data = transform_video(
video=video,
model_name=self.model_name
)
if self.model_name.startswith('slowfast'):
inputs = [data[0].to(self.device)[None, ...], data[1].to(self.device)[None, ...]]
else:
inputs = data.to(self.device)[None, ...]
feats, outs = self.new_forward(inputs)
features = feats.to('cpu').squeeze(0).detach().numpy()
post_act = torch.nn.Softmax(dim=1)
preds = post_act(outs)
pred_scores, pred_classes = preds.topk(k=self.topk)
labels = [self.classmap[int(i)] for i in pred_classes[0]]
scores = [round(float(x), 5) for x in pred_scores[0]]
return labels, scores, features
def new_forward(self, x: Union[torch.Tensor, list]):
"""
Generate embeddings returned by the second last hidden layer.
Args:
x (`Union[torch.Tensor, list]`):
tensor or list of input video after transforms
Returns:
Tensor of layer outputs.
"""
blocks = list(self.model.children())
if len(blocks) == 1:
blocks = blocks[0]
if self.model_name.startswith('x3d'):
sub_blocks = list(blocks[-1].children())
extractor = FeatureExtractor(self.model, sub_blocks, layer=0)
elif self.model_name.startswith('mvit'):
sub_blocks = list(blocks[-1].children())
extractor = FeatureExtractor(self.model, sub_blocks, layer=0)
else:
extractor = FeatureExtractor(self.model, blocks, layer=-2)
features, outs = extractor(x)
if features.dim() == 5:
global_pool = nn.AdaptiveAvgPool3d(1)
features = global_pool(features)
return features.flatten(), outs
def get_model_name(self):
full_list = [
'c2d_r50',
'i3d_r50',
'slow_r50',
'slowfast_r50',
'slowfast_r101',
'x3d_xs',
'x3d_s',
'x3d_m',
'mvit_base_16x4',
'mvit_base_32x3'
]
full_list.sort()
return full_list
class FeatureExtractor(nn.Module):
def __init__(self, model: nn.Module, blocks: List[nn.Module], layer: int):
super().__init__()
self.model = model
self.features = None
target_layer = blocks[layer]
self.handler = target_layer.register_forward_hook(self.save_outputs_hook())
def save_outputs_hook(self) -> Callable:
def fn(_, __, output):
self.features = output
return fn
def forward(self, x):
outs = self.model(x)
self.handler.remove()
return self.features, outs

4
requirements.txt

@ -0,0 +1,4 @@
# torch>=1.8.0
# torchvision>=0.9.0
# pytorchvideo
# towhee>=0.6.0
Loading…
Cancel
Save