logo
Browse Source

Add more resources

Signed-off-by: Jael Gu <mengjia.gu@zilliz.com>
main
Jael Gu 4 months ago
parent
commit
e46fc20bab
  1. 13
      README.md

13
README.md

@ -98,3 +98,16 @@ and generates a video embedding in numpy.ndarray.
- labels: predicted class names.
- scores: possibility scores ranking from high to low corresponding to predicted labels.
- features: a video embedding in shape of (num_features,) representing features extracted by model.
# More Resources
- [Understanding Class Activation Mapping (CAM) in Deep Learning - Zilliz blog](https://zilliz.com/learn/class-activation-mapping-CAM): Class Activation Mapping (CAM) is used to visualize and understand the decision-making of convolutional neural networks (CNNs) for computer vision tasks.
- [How to Get the Right Vector Embeddings - Zilliz blog](https://zilliz.com/blog/how-to-get-the-right-vector-embeddings): A comprehensive introduction to vector embeddings and how to generate them with popular open-source models.
- [What is a Convolutional Neural Network? An Engineer's Guide](https://zilliz.com/glossary/convolutional-neural-network): Convolutional Neural Network is a type of deep neural network that processes images, speeches, and videos. Let's find out more about CNN.
- [Understanding ImageNet: A Key Resource for Computer Vision and AI Research](https://zilliz.com/glossary/imagenet): The large-scale image database with over 14 million annotated images. Learn how this dataset supports advancements in computer vision.
- [Everything You Need to Know About Zero Shot Learning - Zilliz blog](https://zilliz.com/learn/what-is-zero-shot-learning): A comprehensive guide to Zero-Shot Learning, covering its methodologies, its relations with similarity search, and popular Zero-Shot Classification Models.
- [What is a Generative Adversarial Network? An Easy Guide](https://zilliz.com/glossary/generative-adversarial-networks): Just like we classify animal fossils into domains, kingdoms, and phyla, we classify AI networks, too. At the highest level, we classify AI networks as "discriminative" and "generative." A generative neural network is an AI that creates something new. This differs from a discriminative network, which classifies something that already exists into particular buckets. Kind of like we're doing right now, by bucketing generative adversarial networks (GANs) into appropriate classifications.
So, if you were in a situation where you wanted to use textual tags to create a new visual image, like with Midjourney, you'd use a generative network. However, if you had a giant pile of data that you needed to classify and tag, you'd use a discriminative model.
- [Enhancing Information Retrieval with Sparse Embeddings | Zilliz Learn - Zilliz blog](https://zilliz.com/learn/enhancing-information-retrieval-learned-sparse-embeddings): Explore the inner workings, advantages, and practical applications of learned sparse embeddings with the Milvus vector database
- [Zilliz partnership with PyTorch - View image search solution tutorial](https://zilliz.com/partners/pytorch): Zilliz partnership with PyTorch
Loading…
Cancel
Save