tsm
copied
Xinyu Ge
2 years ago
6 changed files with 211 additions and 1 deletions
@ -1,2 +1,84 @@ |
|||
# tsm |
|||
# Video Classification with TSM |
|||
|
|||
*Author: [Xinyu Ge](https://github.com/gexy185)* |
|||
|
|||
<br /> |
|||
|
|||
## Description |
|||
|
|||
A video classification operator generates labels (and corresponding scores) and extracts features for the input video. |
|||
It transforms the video into frames and loads pre-trained models by model names. |
|||
This operator has implemented pre-trained models from [TSM](https://arxiv.org/abs/1811.08383) |
|||
and maps vectors with labels provided by datasets used for pre-training. |
|||
|
|||
<br /> |
|||
|
|||
## Code Example |
|||
|
|||
Use the pretrained ActionClip model to classify and generate a vector for the given video path './archery.mp4' |
|||
([download](https://dl.fbaipublicfiles.com/pytorchvideo/projects/archery.mp4)). |
|||
|
|||
*Write the pipeline in simplified style*: |
|||
|
|||
- Predict labels (default): |
|||
```python |
|||
import towhee |
|||
|
|||
( |
|||
towhee.glob('./archery.mp4') |
|||
.video_decode.ffmpeg() |
|||
.video_classification.tsm( |
|||
model_name='tsm_k400_r50_seg8', topk=5) |
|||
.show() |
|||
) |
|||
``` |
|||
<br /> |
|||
|
|||
## Factory Constructor |
|||
|
|||
Create the operator via the following factory method |
|||
|
|||
***video_classification.tsm( |
|||
model_name='tsm_k400_r50_seg8', skip_preprocess=False, classmap=None, topk=5)*** |
|||
|
|||
**Parameters:** |
|||
|
|||
***model_name***: *str* |
|||
|
|||
The name of pre-trained clip model. |
|||
|
|||
Supported model names: |
|||
- tsm_k400_r50_seg8 |
|||
|
|||
***skip_preprocess***: *bool* |
|||
|
|||
Flag to control whether to skip video transforms, defaults to False. |
|||
If set to True, the step to transform videos will be skipped. |
|||
In this case, the user should guarantee that all the input video frames are already reprocessed properly, |
|||
and thus can be fed to model directly. |
|||
|
|||
***classmap***: *Dict[str: int]*: |
|||
|
|||
Dictionary that maps class names to one hot vectors. |
|||
If not given, the operator will load the default class map dictionary. |
|||
|
|||
***topk***: *int* |
|||
|
|||
The topk labels & scores to present in result. The default value is 5. |
|||
|
|||
## Interface |
|||
|
|||
A video classification operator generates a list of class labels |
|||
and a corresponding vector in numpy.ndarray given a video input data. |
|||
|
|||
**Parameters:** |
|||
|
|||
***video***: *Union[str, numpy.ndarray]* |
|||
|
|||
Input video data using local path in string or video frames in ndarray. |
|||
|
|||
|
|||
**Returns**: *(list, list)* |
|||
|
|||
A tuple of (labels, scores), |
|||
which contains lists of predicted class names and corresponding scores. |
|||
|
Binary file not shown.
@ -0,0 +1,19 @@ |
|||
# Copyright 2021 Zilliz. All rights reserved. |
|||
# |
|||
# Licensed under the Apache License, Version 2.0 (the "License"); |
|||
# you may not use this file except in compliance with the License. |
|||
# You may obtain a copy of the License at |
|||
# |
|||
# http://www.apache.org/licenses/LICENSE-2.0 |
|||
# |
|||
# Unless required by applicable law or agreed to in writing, software |
|||
# distributed under the License is distributed on an "AS IS" BASIS, |
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|||
# See the License for the specific language governing permissions and |
|||
# limitations under the License. |
|||
|
|||
from .tsm import Tsm |
|||
|
|||
|
|||
def tsm(**kwargs): |
|||
return Tsm(**kwargs) |
Binary file not shown.
File diff suppressed because one or more lines are too long
@ -0,0 +1,108 @@ |
|||
import logging |
|||
import os |
|||
import json |
|||
from pathlib import Path |
|||
from typing import List |
|||
|
|||
import torch |
|||
import numpy |
|||
|
|||
from towhee import register |
|||
from towhee.operator.base import NNOperator |
|||
from towhee.types.video_frame import VideoFrame |
|||
from towhee.models.utils.video_transforms import get_configs, transform_video |
|||
from towhee.models.tsm.tsm import create_model |
|||
|
|||
log = logging.getLogger() |
|||
|
|||
|
|||
@register(output_schema=['labels', 'scores', 'features']) |
|||
class Tsm(NNOperator): |
|||
""" |
|||
Generate a list of class labels given a video input data. |
|||
Default labels are from [Kinetics400 Dataset](https://deepmind.com/research/open-source/kinetics). |
|||
Args: |
|||
model_name (`str`): |
|||
Supported model names: |
|||
- tsm_k400_r50_seg8 |
|||
skip_preprocess (`str`): |
|||
Flag to skip video transforms. |
|||
predict (`bool`): |
|||
Flag to control whether predict labels. If False, then return video embedding. |
|||
classmap (`str=None`): |
|||
Path of the json file to match class names. |
|||
topk (`int=5`): |
|||
The number of classification labels to be returned (ordered by possibility from high to low). |
|||
""" |
|||
def __init__(self, |
|||
model_name: str = 'tsm_k400_r50_seg8', |
|||
framework: str = 'pytorch', |
|||
skip_preprocess: bool = False, |
|||
classmap: str = None, |
|||
topk: int = 5, |
|||
): |
|||
super().__init__(framework=framework) |
|||
self.model_name = model_name |
|||
self.skip_preprocess = skip_preprocess |
|||
self.topk = topk |
|||
if 'k400' in model_name: |
|||
self.dataset_name = 'kinetics_400' |
|||
if classmap is None: |
|||
class_file = os.path.join(str(Path(__file__).parent), self.dataset_name+'.json') |
|||
with open(class_file, "r") as f: |
|||
kinetics_classes = json.load(f) |
|||
self.classmap = {} |
|||
for k, v in kinetics_classes.items(): |
|||
self.classmap[v] = str(k).replace('"', '') |
|||
else: |
|||
self.classmap = classmap |
|||
self.device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|||
if model_name == 'tsm_k400_r50_seg8': |
|||
self.weights_path = os.path.join(str(Path(__file__).parent), 'TSM_kinetics_RGB_resnet50_shift8_blockres_avg_segment8_e50.pth') |
|||
self.model = create_model(model_name=model_name, pretrained=True, weights_path=self.weights_path, device=self.device) |
|||
self.transform_cfgs = get_configs( |
|||
side_size=224, |
|||
crop_size=224, |
|||
num_frames=8, |
|||
mean=self.model.input_mean, |
|||
std=self.model.input_std, |
|||
) |
|||
|
|||
def __call__(self, video: List[VideoFrame]): |
|||
""" |
|||
Args: |
|||
video (`List[VideoFrame]`): |
|||
Video path in string. |
|||
|
|||
Returns: |
|||
(labels, scores) |
|||
A tuple of lists (labels, scores). |
|||
OR emb |
|||
Video embedding. |
|||
""" |
|||
# Convert list of towhee.types.Image to numpy.ndarray in float32 |
|||
video = numpy.stack([img.astype(numpy.float32)/255. for img in video], axis=0) |
|||
assert len(video.shape) == 4 |
|||
video = video.transpose(3, 0, 1, 2) # twhc -> ctwh |
|||
|
|||
# Transform video data given configs |
|||
if self.skip_preprocess: |
|||
self.cfg.update(num_frames=None) |
|||
|
|||
data = transform_video( |
|||
video=video, |
|||
**self.transform_cfgs |
|||
) |
|||
inputs = data.to(self.device)[None, ...] |
|||
|
|||
feats = self.model.forward_features(inputs) |
|||
features = feats.to('cpu').squeeze(0).detach().numpy() |
|||
|
|||
outs = self.model(feats) |
|||
post_act = torch.nn.Softmax(dim=1) |
|||
preds = post_act(outs) |
|||
pred_scores, pred_classes = preds.topk(k=self.topk) |
|||
labels = [self.classmap[int(i)] for i in pred_classes[0]] |
|||
scores = [round(float(x), 5) for x in pred_scores[0]] |
|||
|
|||
return labels, scores, features |
Loading…
Reference in new issue