| 
						
						
							
								
							
						
						
					 | 
				
				 | 
				
					@ -18,38 +18,23 @@ and maps vectors with labels provided by datasets used for pre-training. | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					Use the pretrained TSM model to classify and generate a vector for the given video path './archery.mp4'  | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					([download](https://dl.fbaipublicfiles.com/pytorchvideo/projects/archery.mp4)). | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					 *Write the pipeline in simplified style*: | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					*Write a pipeline with explicit inputs/outputs name specifications*: | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					- Predict labels (default): | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					```python | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					import towhee | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					( | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					    towhee.glob('./archery.mp4')  | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					          .video_decode.ffmpeg() | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					          .action_classification.tsm( | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					            model_name='tsm_k400_r50_seg8', topk=5) | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					          .show() | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					from towhee.dc2 import pipe, ops, DataCollection | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					p = ( | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					    pipe.input('path') | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					        .map('path', 'frames', ops.video_decode.ffmpeg()) | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					        .map('frames', ('labels', 'scores', 'features'), | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					             ops.action_classification.tsm(model_name='tsm_k400_r50_seg8')) | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					        .output('path', 'labels', 'scores', 'features') | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					) | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					``` | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					<img src="./result1.png" height="px"/> | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					*Write a same pipeline with explicit inputs/outputs name specifications*: | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					```python | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					import towhee | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					( | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					    towhee.glob['path']('./archery.mp4') | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					          .video_decode.ffmpeg['path', 'frames']() | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					          .action_classification.tsm['frames', ('labels', 'scores', 'features')]( | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					                model_name='tsm_k400_r50_seg8') | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					          .select['path', 'labels', 'scores', 'features']() | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					          .show(formatter={'path': 'video_path'}) | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					) | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					DataCollection(p('./archery.mp4')).show() | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					``` | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					<img src="./result2.png" height="px"/> | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					<img src="./result.png" height="px"/> | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					<br /> | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					
 | 
				
			
			
		
	
	
		
			
				
					| 
						
							
								
							
						
						
						
					 | 
				
				 | 
				
					
  |