diff --git a/README.md b/README.md index 3646dd6..29eb168 100644 --- a/README.md +++ b/README.md @@ -17,39 +17,23 @@ and maps vectors with labels provided by datasets used for pre-training. Use the pretrained Uniformer model to classify and generate a vector for the given video path './archery.mp4' ([download](https://dl.fbaipublicfiles.com/pytorchvideo/projects/archery.mp4)). +*Write a pipeline with explicit inputs/outputs name specifications*: - *Write the pipeline in simplified style*: - -- Predict labels (default): ```python -import towhee - -( - towhee.glob('./archery.mp4') - .video_decode.ffmpeg() - .action_classification.uniformer( - model_name='uniformer_k400_s8', topk=5) - .show() +from towhee.dc2 import pipe, ops, DataCollection + +p = ( + pipe.input('path') + .map('path', 'frames', ops.video_decode.ffmpeg()) + .map('frames', ('labels', 'scores', 'features'), + ops.action_classification.uniformer(model_name='uniformer_k400_s8')) + .output('path', 'labels', 'scores', 'features') ) -``` - - -*Write a same pipeline with explicit inputs/outputs name specifications*: -```python -import towhee - -( - towhee.glob['path']('./archery.mp4') - .video_decode.ffmpeg['path', 'frames']() - .action_classification.uniformer['frames', ('labels', 'scores', 'features')]( - model_name='uniformer_k400_s8') - .select['path', 'labels', 'scores', 'features']() - .show(formatter={'path': 'video_path'}) -) +DataCollection(p('./archery.mp4')).show() ``` - +
diff --git a/result.png b/result.png new file mode 100644 index 0000000..6bafeee Binary files /dev/null and b/result.png differ diff --git a/result1.png b/result1.png deleted file mode 100644 index 6d574bf..0000000 Binary files a/result1.png and /dev/null differ diff --git a/result2.png b/result2.png deleted file mode 100644 index 2c14fa4..0000000 Binary files a/result2.png and /dev/null differ