5 changed files with 305 additions and 1 deletions
			
			
		@ -1,2 +1,104 @@ | 
			
		|||||
# video-swin-transformer | 
				 | 
			
		||||
 | 
				# Action Classification with VideoSwinTransformer | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				Author: Jinling xu | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				<br /> | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				## Description | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				An action classification operator generates labels of human activities (with corresponding scores) | 
			
		||||
 | 
				and extracts features for the input video. | 
			
		||||
 | 
				It transforms the video into frames and loads pre-trained models by model names. | 
			
		||||
 | 
				This operator has implemented pre-trained models from [TimeSformer](https://arxiv.org/abs/2102.05095) | 
			
		||||
 | 
				and maps vectors with labels. | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				<br /> | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				## Code Example | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				Use the pretrained TimeSformer model ('timesformer_k400_8x224') | 
			
		||||
 | 
				to classify and generate a vector for the given video path './archery.mp4' ([download](https://dl.fbaipublicfiles.com/pytorchvideo/projects/archery.mp4)). | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				 *Write the pipeline in simplified style*: | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				```python | 
			
		||||
 | 
				import towhee | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				( | 
			
		||||
 | 
				    towhee.glob('./archery.mp4') | 
			
		||||
 | 
				          .video_decode.ffmpeg() | 
			
		||||
 | 
				          .action_classification.video_swin_transformer(model_name='swin_tiny_patch244_window877_kinetics400_1k') | 
			
		||||
 | 
				          .show() | 
			
		||||
 | 
				) | 
			
		||||
 | 
				``` | 
			
		||||
 | 
				<img src="./result1.png" width="800px"/> | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				<br /> | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				*Write a same pipeline with explicit inputs/outputs name specifications:* | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				```python | 
			
		||||
 | 
				import towhee | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				( | 
			
		||||
 | 
				    towhee.glob['path']('./archery.mp4') | 
			
		||||
 | 
				          .video_decode.ffmpeg['path', 'frames']() | 
			
		||||
 | 
				          .action_classification.video_swin_transformer['frames', ('labels', 'scores', 'features')]( | 
			
		||||
 | 
				                model_name='swin_tiny_patch244_window877_kinetics400_1k') | 
			
		||||
 | 
				          .select['path', 'labels', 'scores', 'features']() | 
			
		||||
 | 
				          .show(formatter={'path': 'video_path'}) | 
			
		||||
 | 
				) | 
			
		||||
 | 
				``` | 
			
		||||
 | 
				<img src="./result2.png" width="800px"/> | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				<br /> | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				## Factory Constructor | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				Create the operator via the following factory method | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				***action_classification.timesformer( | 
			
		||||
 | 
				model_name='timesformer_k400_8x224', skip_preprocess=False, classmap=None, topk=5)*** | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				**Parameters:** | 
			
		||||
 | 
				
 | 
			
		||||
 | 
					***model_name***: *str* | 
			
		||||
 | 
				
 | 
			
		||||
 | 
					The name of pre-trained model. Supported model names: | 
			
		||||
 | 
				- timesformer_k400_8x224 | 
			
		||||
 | 
				
 | 
			
		||||
 | 
					***skip_preprocess***: *bool* | 
			
		||||
 | 
				
 | 
			
		||||
 | 
					Flag to control whether to skip UniformTemporalSubsample in video transforms, defaults to False. | 
			
		||||
 | 
				If set to True, the step of UniformTemporalSubsample will be skipped. | 
			
		||||
 | 
				In this case, the user should guarantee that all the input video frames are already reprocessed properly, | 
			
		||||
 | 
				and thus can be fed to model directly. | 
			
		||||
 | 
				
 | 
			
		||||
 | 
					***classmap***: *Dict[str: int]*:  | 
			
		||||
 | 
				
 | 
			
		||||
 | 
					Dictionary that maps class names to one hot vectors. | 
			
		||||
 | 
				If not given, the operator will load the default class map dictionary. | 
			
		||||
 | 
				
 | 
			
		||||
 | 
					***topk***: *int* | 
			
		||||
 | 
				
 | 
			
		||||
 | 
					The topk labels & scores to present in result. The default value is 5. | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				## Interface | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				A video classification operator generates a list of class labels | 
			
		||||
 | 
				and a corresponding vector in numpy.ndarray given a video input data. | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				**Parameters:** | 
			
		||||
 | 
				
 | 
			
		||||
 | 
					***video***: *List[towhee.types.VideoFrame]* | 
			
		||||
 | 
				
 | 
			
		||||
 | 
					Input video data should be a list of towhee.types.VideoFrame representing video frames in order. | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				**Returns**: | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				   ***labels, scores, features***: *Tuple(List[str], List[float], numpy.ndarray)* | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				- labels: predicted class names. | 
			
		||||
 | 
				- scores: possibility scores ranking from high to low corresponding to predicted labels. | 
			
		||||
 | 
				- features: a video embedding in shape of (768,) representing features extracted by model. | 
			
		||||
 | 
			
		|||||
@ -0,0 +1,20 @@ | 
			
		|||||
 | 
				# Copyright 2021 Zilliz. All rights reserved. | 
			
		||||
 | 
				# | 
			
		||||
 | 
				# Licensed under the Apache License, Version 2.0 (the "License"); | 
			
		||||
 | 
				# you may not use this file except in compliance with the License. | 
			
		||||
 | 
				# You may obtain a copy of the License at | 
			
		||||
 | 
				# | 
			
		||||
 | 
				#     http://www.apache.org/licenses/LICENSE-2.0 | 
			
		||||
 | 
				# | 
			
		||||
 | 
				# Unless required by applicable law or agreed to in writing, software | 
			
		||||
 | 
				# distributed under the License is distributed on an "AS IS" BASIS, | 
			
		||||
 | 
				# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
			
		||||
 | 
				# See the License for the specific language governing permissions and | 
			
		||||
 | 
				# limitations under the License. | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				from .video_swin_transformer import VideoSwinTransformer | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				def video_swin_transformer(model_name: str, modality: str, **kwargs): | 
			
		||||
 | 
				    return VideoSwinTransformer(model_name, modality, **kwargs) | 
			
		||||
 | 
				
 | 
			
		||||
@ -0,0 +1,74 @@ | 
			
		|||||
 | 
				
 | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				def configs(model_name): | 
			
		||||
 | 
				    args = { | 
			
		||||
 | 
				        'swin_base_patch244_window877_kinetics400_1k': | 
			
		||||
 | 
				            {'pretrained': 'https://github.com/SwinTransformer/storage/releases/download/v1.0.4/swin_base_patch244_window877_kinetics400_1k.pth', | 
			
		||||
 | 
				             'num_classes': 400, | 
			
		||||
 | 
				             'labels_file_name': 'kinetics_400.json', | 
			
		||||
 | 
				             'embed_dim': 128, | 
			
		||||
 | 
				             'depths': [2, 2, 18, 2], | 
			
		||||
 | 
				             'num_heads': [4, 8, 16, 32], | 
			
		||||
 | 
				             'patch_size': (2, 4, 4), | 
			
		||||
 | 
				             'window_size': (8, 7, 7), 'drop_path_rate': 0.4, 'patch_norm': True}, | 
			
		||||
 | 
				        'swin_small_patch244_window877_kinetics400_1k': | 
			
		||||
 | 
				            { | 
			
		||||
 | 
				                'pretrained': 'https://github.com/SwinTransformer/storage/releases/download/v1.0.4/swin_small_patch244_window877_kinetics400_1k.pth', | 
			
		||||
 | 
				                'num_classes': 400, | 
			
		||||
 | 
				                'labels_file_name': 'kinetics_400.json', | 
			
		||||
 | 
				                'embed_dim': 96, | 
			
		||||
 | 
				                'depths': [2, 2, 18, 2], | 
			
		||||
 | 
				                'num_heads': [3, 6, 12, 24], | 
			
		||||
 | 
				                'patch_size': (2, 4, 4), | 
			
		||||
 | 
				                'window_size': (8, 7, 7), | 
			
		||||
 | 
				                'drop_path_rate': 0.4, | 
			
		||||
 | 
				                'patch_norm': True}, | 
			
		||||
 | 
				        'swin_tiny_patch244_window877_kinetics400_1k': | 
			
		||||
 | 
				            { | 
			
		||||
 | 
				                'pretrained': 'https://github.com/SwinTransformer/storage/releases/download/v1.0.4/swin_tiny_patch244_window877_kinetics400_1k.pth', | 
			
		||||
 | 
				                'num_classes': 400, | 
			
		||||
 | 
				                'labels_file_name': 'kinetics_400.json', | 
			
		||||
 | 
				                'embed_dim': 96, | 
			
		||||
 | 
				                'depths': [2, 2, 6, 2], | 
			
		||||
 | 
				                'num_heads': [3, 6, 12, 24], | 
			
		||||
 | 
				                'patch_size': (2, 4, 4), | 
			
		||||
 | 
				                'window_size': (8, 7, 7), | 
			
		||||
 | 
				                'drop_path_rate': 0.1, | 
			
		||||
 | 
				                'patch_norm': True}, | 
			
		||||
 | 
				        'swin_base_patch244_window877_kinetics400_22k': | 
			
		||||
 | 
				            { | 
			
		||||
 | 
				                'pretrained': 'https://github.com/SwinTransformer/storage/releases/download/v1.0.4/swin_base_patch244_window877_kinetics400_22k.pth', | 
			
		||||
 | 
				                'num_classes': 400, | 
			
		||||
 | 
				                'labels_file_name': 'kinetics_400.json', | 
			
		||||
 | 
				                'embed_dim': 128, | 
			
		||||
 | 
				                'depths': [2, 2, 18, 2], | 
			
		||||
 | 
				                'num_heads': [4, 8, 16, 32], | 
			
		||||
 | 
				                'patch_size': (2, 4, 4), | 
			
		||||
 | 
				                'window_size': (8, 7, 7), | 
			
		||||
 | 
				                'drop_path_rate': 0.4, | 
			
		||||
 | 
				                'patch_norm': True}, | 
			
		||||
 | 
				        'swin_base_patch244_window877_kinetics600_22k': | 
			
		||||
 | 
				            { | 
			
		||||
 | 
				                'pretrained': 'https://github.com/SwinTransformer/storage/releases/download/v1.0.4/swin_base_patch244_window877_kinetics600_22k.pth', | 
			
		||||
 | 
				                'num_classes': 600, | 
			
		||||
 | 
				                'labels_file_name': '', | 
			
		||||
 | 
				                'embed_dim': 128, | 
			
		||||
 | 
				                'depths': [2, 2, 18, 2], | 
			
		||||
 | 
				                'num_heads': [4, 8, 16, 32], | 
			
		||||
 | 
				                'patch_size': (2, 4, 4), | 
			
		||||
 | 
				                'window_size': (8, 7, 7), 'drop_path_rate': 0.4, 'patch_norm': True}, | 
			
		||||
 | 
				        'swin_base_patch244_window1677_sthv2': | 
			
		||||
 | 
				            { | 
			
		||||
 | 
				                'pretrained': 'https://github.com/SwinTransformer/storage/releases/download/v1.0.4/swin_base_patch244_window1677_sthv2.pth', | 
			
		||||
 | 
				                'num_classes': 174, | 
			
		||||
 | 
				                'labels_file_name': '', | 
			
		||||
 | 
				                'embed_dim': 128, | 
			
		||||
 | 
				                'depths': [2, 2, 18, 2], | 
			
		||||
 | 
				                'num_heads': [4, 8, 16, 32], | 
			
		||||
 | 
				                'patch_size': (2, 4, 4), | 
			
		||||
 | 
				                'window_size': (16, 7, 7), | 
			
		||||
 | 
				                'drop_path_rate': 0.4, | 
			
		||||
 | 
				                'patch_norm': True}, | 
			
		||||
 | 
				    } | 
			
		||||
 | 
				    return args[model_name] | 
			
		||||
 | 
				
 | 
			
		||||
								
									
										File diff suppressed because one or more lines are too long
									
								
							
						
					@ -0,0 +1,107 @@ | 
			
		|||||
 | 
				import logging | 
			
		||||
 | 
				import os | 
			
		||||
 | 
				import json | 
			
		||||
 | 
				from pathlib import Path | 
			
		||||
 | 
				from typing import List | 
			
		||||
 | 
				import torch | 
			
		||||
 | 
				import numpy | 
			
		||||
 | 
				from towhee import register | 
			
		||||
 | 
				from towhee.operator.base import NNOperator | 
			
		||||
 | 
				from towhee.types.video_frame import VideoFrame | 
			
		||||
 | 
				from towhee.models.utils.video_transforms import transform_video | 
			
		||||
 | 
				from towhee.models.video_swin_transformer import video_swin_transformer | 
			
		||||
 | 
				from get_configs import configs | 
			
		||||
 | 
				log = logging.getLogger() | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				@register(output_schema=['labels', 'scores', 'features']) | 
			
		||||
 | 
				class VideoSwinTransformer(NNOperator): | 
			
		||||
 | 
				    """ | 
			
		||||
 | 
				    Generate a list of class labels given a video input data. | 
			
		||||
 | 
				    Default labels are from [Kinetics400 Dataset](https://deepmind.com/research/open-source/kinetics). | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				    Args: | 
			
		||||
 | 
				        model_name (`str`): | 
			
		||||
 | 
				            Supported model names: | 
			
		||||
 | 
				            - swin_tiny_patch244_window877_kinetics400_1k | 
			
		||||
 | 
				        skip_preprocess (`str`): | 
			
		||||
 | 
				            Flag to skip video transforms. | 
			
		||||
 | 
				        classmap (`str=None`): | 
			
		||||
 | 
				            Path of the json file to match class names. | 
			
		||||
 | 
				        topk (`int=5`): | 
			
		||||
 | 
				            The number of classification labels to be returned (ordered by possibility from high to low). | 
			
		||||
 | 
				    """ | 
			
		||||
 | 
				    def __init__(self, | 
			
		||||
 | 
				                 model_name: str = 'swin_tiny_patch244_window877_kinetics400_1k', | 
			
		||||
 | 
				                 framework: str = 'pytorch', | 
			
		||||
 | 
				                 skip_preprocess: bool = False, | 
			
		||||
 | 
				                 classmap: str = None, | 
			
		||||
 | 
				                 topk: int = 5, | 
			
		||||
 | 
				                 ): | 
			
		||||
 | 
				        super().__init__(framework=framework) | 
			
		||||
 | 
				        self.model_name = model_name | 
			
		||||
 | 
				        self.skip_preprocess = skip_preprocess | 
			
		||||
 | 
				        self.topk = topk | 
			
		||||
 | 
				        self.model_configs = configs(model_name=self.model_name) | 
			
		||||
 | 
				        if classmap is None: | 
			
		||||
 | 
				            class_file = os.path.join(str(Path(__file__).parent), self.model_configs['labels_file_name']) | 
			
		||||
 | 
				            with open(class_file, 'r') as f: | 
			
		||||
 | 
				                kinetics_classes = json.load(f) | 
			
		||||
 | 
				            self.classmap = {} | 
			
		||||
 | 
				            for k, v in kinetics_classes.items(): | 
			
		||||
 | 
				                self.classmap[v] = str(k).replace('"', '') | 
			
		||||
 | 
				        else: | 
			
		||||
 | 
				            self.classmap = classmap | 
			
		||||
 | 
				        self.device = 'cuda' if torch.cuda.is_available() else 'cpu' | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				        self.model = video_swin_transformer.VideoSwinTransformer( | 
			
		||||
 | 
				                                            pretrained=self.model_configs['pretrained'], | 
			
		||||
 | 
				                                            num_classes=self.model_configs['num_classes'], | 
			
		||||
 | 
				                                            embed_dim=self.model_configs['embed_dim'], | 
			
		||||
 | 
				                                            depths=self.model_configs['depths'], | 
			
		||||
 | 
				                                            num_heads=self.model_configs['num_heads'], | 
			
		||||
 | 
				                                            patch_size=self.model_configs['patch_size'], | 
			
		||||
 | 
				                                            window_size=self.model_configs['window_size'], | 
			
		||||
 | 
				                                            drop_path_rate=self.model_configs['drop_path_rate'], | 
			
		||||
 | 
				                                            patch_norm=self.model_configs['patch_norm'], | 
			
		||||
 | 
				                                            device=self.device) | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				    def __call__(self, video: List[VideoFrame]): | 
			
		||||
 | 
				        """ | 
			
		||||
 | 
				        Args: | 
			
		||||
 | 
				            video (`List[VideoFrame]`): | 
			
		||||
 | 
				                Video path in string. | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				        Returns: | 
			
		||||
 | 
				            (labels, scores) | 
			
		||||
 | 
				                A tuple of lists (labels, scores). | 
			
		||||
 | 
				            OR emb | 
			
		||||
 | 
				                Video embedding. | 
			
		||||
 | 
				        """ | 
			
		||||
 | 
				        # Convert list of towhee.types.Image to numpy.ndarray in float32 | 
			
		||||
 | 
				        video = numpy.stack([img.astype(numpy.float32)/255. for img in video], axis=0) | 
			
		||||
 | 
				        assert len(video.shape) == 4 | 
			
		||||
 | 
				        video = video.transpose(3, 0, 1, 2)  # twhc -> ctwh | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				        # Transform video data given configs | 
			
		||||
 | 
				        if self.skip_preprocess: | 
			
		||||
 | 
				            self.cfg.update(num_frames=None) | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				        data = transform_video( | 
			
		||||
 | 
				            video=video, | 
			
		||||
 | 
				            **self.cfg | 
			
		||||
 | 
				        ) | 
			
		||||
 | 
				        inputs = data.to(self.device)[None, ...] | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				        feats = self.model.forward_features(inputs) | 
			
		||||
 | 
				        features = feats.to('cpu').squeeze(0).detach().numpy() | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				        outs = self.model.head(feats) | 
			
		||||
 | 
				        post_act = torch.nn.Softmax(dim=1) | 
			
		||||
 | 
				        preds = post_act(outs) | 
			
		||||
 | 
				        pred_scores, pred_classes = preds.topk(k=self.topk) | 
			
		||||
 | 
				        labels = [self.classmap[int(i)] for i in pred_classes[0]] | 
			
		||||
 | 
				        scores = [round(float(x), 5) for x in pred_scores[0]] | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				        return labels, scores, features | 
			
		||||
 | 
				
 | 
			
		||||
					Loading…
					
					
				
		Reference in new issue