logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

Updated 3 years ago

action-classification

Action Classification with VideoSwinTransformer

Author: Jinling xu


Description

An action classification operator generates labels of human activities (with corresponding scores) and extracts features for the input video. It transforms the video into frames and loads pre-trained models by model names. This operator has implemented pre-trained models from TimeSformer and maps vectors with labels.


Code Example

Use the pretrained TimeSformer model ('timesformer_k400_8x224') to classify and generate a vector for the given video path './archery.mp4' (download).

Write the pipeline in simplified style:

import towhee

(
    towhee.dc(['./demo_video.mp4']) 
          .video_decode.ffmpeg(sample_type='uniform_temporal_subsample', args={'num_samples': 4}) 
          .runas_op(func=lambda x: [y for y in x]) 
          .action_classification.video_swin_transformer(model_name='swin_tiny_patch244_window877_kinetics400_1k')
          .show()
)


Write a same pipeline with explicit inputs/outputs name specifications:

import towhee

(
    towhee.dc['path']('./demo_video.mp4')
          .video_decode.ffmpeg['path', 'frames'](sample_type='uniform_temporal_subsample', args={'num_samples': 4}) 
          .runas_op['frames', 'frames'](func=lambda x: [y for y in x]) 
          .action_classification.video_swin_transformer['frames', ('labels', 'scores', 'features')](model_name='swin_tiny_patch244_window877_kinetics400_1k')
          .select['path', 'labels', 'scores', 'features']()
          .show(formatter={'path': 'video_path'})
)


Factory Constructor

Create the operator via the following factory method

action_classification.video_swin_transformer( model_name='swin_tiny_patch244_window877_kinetics400_1k', skip_preprocess=False, classmap=None, topk=5)

Parameters:

model_name: str

​ The name of pre-trained model. Supported model names:

  • swin_tiny_patch244_window877_kinetics400_1k
  • swin_base_patch244_window877_kinetics400_1k
  • swin_small_patch244_window877_kinetics400_1k
  • swin_base_patch244_window877_kinetics400_22k
  • swin_base_patch244_window877_kinetics600_22k
  • swin_base_patch244_window1677_sthv2

skip_preprocess: bool

​ Flag to control whether to skip UniformTemporalSubsample in video transforms, defaults to False. If set to True, the step of UniformTemporalSubsample will be skipped. In this case, the user should guarantee that all the input video frames are already reprocessed properly, and thus can be fed to model directly.

classmap: Dict[str: int]:

​ Dictionary that maps class names to one hot vectors. If not given, the operator will load the default class map dictionary.

topk: int

​ The topk labels & scores to present in result. The default value is 5.

Interface

A video classification operator generates a list of class labels and a corresponding vector in numpy.ndarray given a video input data.

Parameters:

video: List[towhee.types.VideoFrame]

​ Input video data should be a list of towhee.types.VideoFrame representing video frames in order.

Returns:

labels, scores, features: Tuple(List[str], List[float], numpy.ndarray)

  • labels: predicted class names.
  • scores: possibility scores ranking from high to low corresponding to predicted labels.
  • features: a video embedding in shape of (768,) representing features extracted by model.
xujinling 949ce7ab77 add5 7 Commits
file-icon .gitattributes
1.1 KiB
download-icon
Initial commit 3 years ago
file-icon README.md
3.6 KiB
download-icon
add5 3 years ago
file-icon __init__.py
733 B
download-icon
add2 3 years ago
file-icon get_configs.py
3.4 KiB
download-icon
add 3 years ago
file-icon kinetics_400.json
10 KiB
download-icon
add 3 years ago
file-icon result1.png
50 KiB
download-icon
add5 3 years ago
file-icon result2.png
153 KiB
download-icon
add5 3 years ago
file-icon video_swin_transformer.py
4.5 KiB
download-icon
add4 3 years ago