logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

106 lines
3.8 KiB

import logging
import os
import json
from pathlib import Path
from typing import List
import torch
import numpy
from towhee import register
from towhee.operator.base import NNOperator
from towhee.types.video_frame import VideoFrame
from towhee.models.utils.video_transforms import transform_video, get_configs
from towhee.models.video_swin_transformer import video_swin_transformer
from towhee.models.video_swin_transformer.get_configs import configs
log = logging.getLogger()
@register(output_schema=['labels', 'scores', 'features'])
class VideoSwinTransformer(NNOperator):
"""
Generate a list of class labels given a video input data.
Default labels are from [Kinetics400 Dataset](https://deepmind.com/research/open-source/kinetics).
Args:
model_name (`str`):
Supported model names:
- swin_t_k400_1k
skip_preprocess (`str`):
Flag to skip video transforms.
classmap (`str=None`):
Path of the json file to match class names.
topk (`int=5`):
The number of classification labels to be returned (ordered by possibility from high to low).
"""
def __init__(self,
model_name: str = 'swin_t_k400_1k',
framework: str = 'pytorch',
skip_preprocess: bool = False,
classmap: str = None,
topk: int = 5,
):
super().__init__(framework=framework)
self.model_name = model_name
self.skip_preprocess = skip_preprocess
self.topk = topk
self.model_configs = configs(self.model_name)
if classmap is None:
class_file = os.path.join(str(Path(__file__).parent), self.model_configs['labels_file_name'])
with open(class_file, 'r') as f:
kinetics_classes = json.load(f)
self.classmap = {}
for k, v in kinetics_classes.items():
self.classmap[v] = str(k).replace('"', '')
else:
self.classmap = classmap
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.model = video_swin_transformer.create_model(model_name=self.model_name,
pretrained=True,
device=self.device)
self.model.to(self.device)
self.transform_cfgs = get_configs(
side_size=256,
crop_size=224,
num_frames=32,
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225],
)
def decoder_video(self, data: List[VideoFrame]):
video = numpy.stack([img.astype(numpy.float32) / 255. for img in data], axis=0)
assert len(video.shape) == 4
video = video.transpose(3, 0, 1, 2) # twhc -> ctwh
video = transform_video(
video=video,
**self.transform_cfgs
)
# [B x C x T x H x W]
video = video.to(self.device)[None, ...]
return video
def __call__(self, video: List[VideoFrame]):
"""
Args:
video (`List[VideoFrame]`):
Video path in string.
Returns:
(labels, scores)
A tuple of lists (labels, scores).
OR emb
Video embedding.
"""
inputs = self.decoder_video(video)
# inputs [B x C x T x H x W]
feats = self.model.forward_features(inputs)
features = feats.to('cpu').squeeze(0).detach().numpy()
outs = self.model.head(feats)
post_act = torch.nn.Softmax(dim=1)
preds = post_act(outs)
pred_scores, pred_classes = preds.topk(k=self.topk)
labels = [self.classmap[int(i)] for i in pred_classes[0]]
scores = [round(float(x), 5) for x in pred_scores[0]]
return labels, scores, features