# Operator: ANN Search: Faiss *author: shiyu*
## Desription Search embedding in [Faiss](https://github.com/facebookresearch/faiss), **please make sure you have inserted data to Faiss before search**.
## Code Example - Insert data into Faiss first ```python import numpy as np import towhee vec = np.random.random((10, 100)).astype('float32') ids = list(i for i in range(10)) x = towhee.dc['id'](ids) \ .runas_op['id', 'vec'](func=lambda x: vec[x]) \ .to_faiss['id', 'vec'](findex='index.bin') ``` - Example *Write the pipeline in simplified style:* ```python query = vec[0:2] towhee.dc(query) \ .ann_search.faiss(findex='index.bin') ``` *Write a same pipeline with explicit inputs/outputs name specifications:* ```python query = vec[0:2] towhee.dc['vec'](query) \ .ann_search.faiss['vec', 'results'](findex='index.bin') \ .show() ```
## Factory Constructor Create the operator via the following factory method: ***ann-search.faiss(findex)*** **Parameters:** ***findex:*** *str* or *faiss.INDEX* The path to faiss index file or faiss index.
## Interface **Parameters:** ***query:*** *list* Query embeddings in Faiss **Returns:** *Entity* Return the results in Faiss with `key` and `score`.