milvus-client
copied
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions
90 lines
3.5 KiB
90 lines
3.5 KiB
from pymilvus import connections, Collection
|
|
from towhee.operator import PyOperator
|
|
import uuid
|
|
|
|
|
|
class Milvus(PyOperator):
|
|
"""
|
|
Search for embedding vectors in Milvus. Note that the Milvus collection has data before searching,
|
|
|
|
Args:
|
|
collection (`str`):
|
|
The collection name.
|
|
kwargs
|
|
The kwargs with collection.search, refer to https://milvus.io/docs/v2.0.x/search.md#Prepare-search-parameters.
|
|
And the `anns_field` defaults to the vector field name, `limit` defaults to 10, and `metric_type` in `param` defaults to 'L2'
|
|
if there has no index(FLAT), and for default index `param`:
|
|
IVF_FLAT: {"params": {"nprobe": 10}},
|
|
IVF_SQ8: {"params": {"nprobe": 10}},
|
|
IVF_PQ: {"params": {"nprobe": 10}},
|
|
HNSW: {"params": {"ef": 10}},
|
|
IVF_HNSW: {"params": {"nprobe": 10, "ef": 10}},
|
|
RHNSW_FLAT: {"params": {"ef": 10}},
|
|
RHNSW_SQ: {"params": {"ef": 10}},
|
|
RHNSW_PQ: {"params": {"ef": 10}},
|
|
ANNOY: {"params": {"search_k": 10}}.
|
|
"""
|
|
|
|
def __init__(self, host: str = 'localhost', port: int = 19530, collection_name: str = None, **kwargs):
|
|
"""
|
|
Get an existing collection.
|
|
"""
|
|
self._host = host
|
|
self._port = port
|
|
self._collection_name = collection_name
|
|
self._connect_name = uuid.uuid4().hex
|
|
connections.connect(alias=self._connect_name, host=self._host, port=self._port)
|
|
self._collection = Collection(self._collection_name, using=self._connect_name)
|
|
|
|
self.kwargs = kwargs
|
|
if 'anns_field' not in self.kwargs:
|
|
fields_schema = self._collection.schema.fields
|
|
for schema in fields_schema:
|
|
if schema.dtype in (101, 100):
|
|
self.kwargs['anns_field'] = schema.name
|
|
|
|
if 'limit' not in self.kwargs:
|
|
self.kwargs['limit'] = 10
|
|
|
|
index_params = {
|
|
'IVF_FLAT': {'params': {'nprobe': 10}},
|
|
'IVF_SQ8': {'params': {'nprobe': 10}},
|
|
'IVF_PQ': {'params': {'nprobe': 10}},
|
|
'HNSW': {'params': {'ef': 10}},
|
|
'RHNSW_FLAT': {'params': {'ef': 10}},
|
|
'RHNSW_SQ': {'params': {'ef': 10}},
|
|
'RHNSW_PQ': {'params': {'ef': 10}},
|
|
'IVF_HNSW': {'params': {'nprobe': 10, 'ef': 10}},
|
|
'ANNOY': {'params': {'search_k': 10}}
|
|
}
|
|
|
|
if 'param' not in self.kwargs:
|
|
if len(self._collection.indexes) != 0:
|
|
index_type = self._collection.indexes[0].params['index_type']
|
|
self.kwargs['param'] = index_params[index_type]
|
|
else:
|
|
self.kwargs['param'] = index_params['IVF_FLAT']
|
|
if 'metric_type' in self.kwargs:
|
|
self.kwargs['param']['metric_type'] = self.kwargs['metric_type']
|
|
else:
|
|
self.kwargs['param']['metric_type'] = 'L2'
|
|
|
|
def __call__(self, query: list):
|
|
milvus_result = self._collection.search(
|
|
data=[query],
|
|
**self.kwargs
|
|
)
|
|
|
|
result = []
|
|
for re in milvus_result:
|
|
row = []
|
|
for hit in re:
|
|
row.extend([hit.id, hit.score])
|
|
if 'output_fields' in self.kwargs:
|
|
for k in self.kwargs['output_fields']:
|
|
row.append(hit.entity._row_data[k])
|
|
result.append(row)
|
|
return result
|
|
|
|
def __del__(self):
|
|
connections.disconnect(self._connect_name)
|