@ -81,3 +81,14 @@ The input data should represent for an audio longer than 2s.
- labels: a list of topk predicted labels by model.
- scores: a list of scores corresponding to labels, representing for possibility.
- vec: a audio embedding generated by model, shape of which is (2048,)
# More Resources
- [Cross-Entropy Loss: Unraveling its Role in Machine Learning - Zilliz blog](https://zilliz.com/learn/Cross-Entropy-Loss-Unraveling-its-Role-in-Machine-Learning): Cross Entropy loss is used for training classification models.
- [Audio Retrieval Based on Milvus - Zilliz blog](https://zilliz.com/blog/audio-retrieval-based-on-milvus): Create an audio retrieval system using Milvus, an open-source vector database. Classify and analyze sound data in real time.
- [Vector Database Use Case: Audio Similarity Search - Zilliz](https://zilliz.com/vector-database-use-cases/audio-similarity-search): Building agile and reliable audio similarity search with Zilliz vector database (fully managed Milvus).
- [Everything You Need to Know About Zero Shot Learning - Zilliz blog](https://zilliz.com/learn/what-is-zero-shot-learning): A comprehensive guide to Zero-Shot Learning, covering its methodologies, its relations with similarity search, and popular Zero-Shot Classification Models.
- [Neural Networks and Embeddings for Language Models - Zilliz blog](https://zilliz.com/learn/Neural-Networks-and-Embeddings-for-Language-Models): Exploring neural network language models, specifically recurrent neural networks, and taking a sneak peek at how embeddings are generated.
- [What is a Generative Adversarial Network? An Easy Guide](https://zilliz.com/glossary/generative-adversarial-networks): Just like we classify animal fossils into domains, kingdoms, and phyla, we classify AI networks, too. At the highest level, we classify AI networks as "discriminative" and "generative." A generative neural network is an AI that creates something new. This differs from a discriminative network, which classifies something that already exists into particular buckets. Kind of like we're doing right now, by bucketing generative adversarial networks (GANs) into appropriate classifications.
So, if you were in a situation where you wanted to use textual tags to create a new visual image, like with Midjourney, you'd use a generative network. However, if you had a giant pile of data that you needed to classify and tag, you'd use a discriminative model.