logo
Browse Source

Add result

Signed-off-by: Jael Gu <mengjia.gu@zilliz.com>
main
Jael Gu 3 years ago
parent
commit
ab6b369f7a
  1. 9
      README.md
  2. BIN
      result.png

9
README.md

@ -13,7 +13,7 @@ The pre-trained model used here is from the paper **PANNs: Large-Scale Pretraine
## Code Example
Predict labels and generate embeddings given the audio path "test.wav".
Predict labels and generate embeddings given the audio path "test.wav".
*Write the pipeline in simplified style*:
@ -25,7 +25,7 @@ import towhee
.audio_decode.ffmpeg()
.runas_op(func=lambda x:[y[0] for y in x])
.audio_classification.panns()
.show()
.show()
)
```
@ -39,9 +39,11 @@ import towhee
.audio_decode.ffmpeg['path', 'frames']()
.runas_op['frames', 'frames'](func=lambda x:[y[0] for y in x])
.audio_classification.panns['frames', ('labels', 'scores', 'vec')]()
.show()
.select['path', 'labels', 'scores', 'vec']()
.show()
)
```
<img src="./result.png" width="800px"/>
<br />
@ -93,4 +95,3 @@ The input data should represent for an audio longer than 2s.
- labels: a list of topk predicted labels by model.
- scores: a list of scores corresponding to labels, representing for possibility.
- vec: a audio embedding generated by model, shape of which is (2048,)

BIN
result.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 11 KiB

Loading…
Cancel
Save