logo
Browse Source

Add

Signed-off-by: Jael Gu <mengjia.gu@zilliz.com>
main
Jael Gu 3 years ago
parent
commit
eecd9efa9b
  1. 19
      __init__.py
  2. 89
      panns.py
  3. 3
      requirements.txt

19
__init__.py

@ -0,0 +1,19 @@
# Copyright 2021 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .panns import Panns
def panns(weights_path: str = None,):
return Panns(weights_path=weights_path)

89
panns.py

@ -0,0 +1,89 @@
# Copyright 2021 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import warnings
import os
import numpy
from typing import Union
import torch
import torchaudio
from panns_inference import AudioTagging, labels
from towhee.operator.base import NNOperator
from towhee import register
warnings.filterwarnings('ignore')
log = logging.getLogger()
@register(output_schema=['label', 'vec'])
class Panns(NNOperator):
"""
Built on top of [panns_inference](https://github.com/qiuqiangkong/panns_inference).
"""
def __init__(self, weights_path: str = None, framework: str = 'pytorch') -> None:
super().__init__(framework=framework)
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.tagger = AudioTagging(checkpoint_path=weights_path, device=self.device)
self.model = self.tagger.model
# self.model.eval()
# self.model.to(self.device)
def __call__(self, audio: Union[str, numpy.ndarray], sample_rate: int = None, top_k: int = 5) -> numpy.ndarray:
if isinstance(audio, str):
source = os.path.abspath(audio)
audio_wav, sr = torchaudio.load(source)
elif isinstance(audio, numpy.ndarray):
sr = sample_rate
audio_wav = torch.tensor(audio).to(torch.float32)
if audio_wav.shape[0] == 2:
audio_wav = torch.mean(audio_wav, dim=0)
elif audio_wav.shape[0] == 1:
audio_wav = audio_wav.squeeze(0)
_sr = 32000
if sr != _sr:
transform = torchaudio.transforms.Resample(orig_freq=sr, new_freq=_sr)
audio_tensors = transform(audio_wav)
audio_tensors = audio_tensors[None, :]
clipwise_output, embedding = self.tagger.inference(audio_tensors)
sorted_indexes = numpy.argsort(clipwise_output[0])[::-1]
tags = []
for k in range(top_k):
tag = numpy.array(labels)[sorted_indexes[k]]
score = clipwise_output[0][sorted_indexes[k]]
tags.append((tag, round(score, 2)))
return tags, embedding.squeeze(0)
# if __name__ == '__main__':
# encoder = Panns()
#
# audio_path = '/audio/path/or/link'
# tags, vecs = encoder(audio_path)
#
# # audio_data = numpy.zeros((2, 441344))
# # sample_rate = 44100
# # tags, vecs = encoder(audio_data, sample_rate)
# print(tags, vecs.shape)

3
requirements.txt

@ -0,0 +1,3 @@
panns_inference
torchaudio
torch
Loading…
Cancel
Save