panns
copied
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions
108 lines
3.7 KiB
108 lines
3.7 KiB
# Copyright 2021 Zilliz. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import logging
|
|
import warnings
|
|
|
|
import os
|
|
import numpy
|
|
from typing import List
|
|
|
|
import torch
|
|
import torchaudio
|
|
|
|
from panns_inference import AudioTagging, labels
|
|
|
|
from towhee.operator.base import NNOperator
|
|
from towhee import register
|
|
from towhee.types.audio_frame import AudioFrame
|
|
|
|
|
|
warnings.filterwarnings('ignore')
|
|
log = logging.getLogger()
|
|
|
|
|
|
@register(output_schema=['label', 'score', 'vec'])
|
|
class Panns(NNOperator):
|
|
"""
|
|
Built on top of [panns_inference](https://github.com/qiuqiangkong/panns_inference).
|
|
"""
|
|
|
|
def __init__(self,
|
|
weights_path: str = None,
|
|
framework: str = 'pytorch',
|
|
sample_rate: int = 32000,
|
|
device: str = None,
|
|
topk: int = 5):
|
|
super().__init__(framework=framework)
|
|
if device:
|
|
self.device = device
|
|
else:
|
|
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
self.sample_rate = sample_rate
|
|
self.topk = topk
|
|
# checkpoint_path=None will download model weights with default url
|
|
# 'https://zenodo.org/record/3987831/files/Cnn14_mAP%3D0.431.pth?download=1'
|
|
self.tagger = AudioTagging(checkpoint_path=weights_path, device=self.device)
|
|
self.model = self.tagger.model
|
|
self.model.eval()
|
|
|
|
def __call__(self, data: List[AudioFrame]):
|
|
sr = data[0].sample_rate
|
|
layout = data[0].layout
|
|
if layout == 'stereo':
|
|
frames = [frame.reshape(-1, 2) for frame in data]
|
|
audio = numpy.vstack(frames)
|
|
audio = numpy.mean(audio, axis=1)
|
|
else:
|
|
audio = numpy.hstack(data)
|
|
|
|
audio = self.int2float(audio).astype('float32')
|
|
if sr != self.sample_rate:
|
|
audio = torch.from_numpy(audio)
|
|
resampler = torchaudio.transforms.Resample(sr, self.sample_rate, dtype=audio.dtype)
|
|
audio = resampler(audio)
|
|
|
|
if len(audio.shape) == 1:
|
|
audio = audio[None, :]
|
|
clipwise_output, embedding = self.tagger.inference(audio)
|
|
|
|
sorted_indexes = numpy.argsort(clipwise_output[0])[::-1]
|
|
tags = []
|
|
scores = []
|
|
for k in range(self.topk):
|
|
tag = numpy.array(labels)[sorted_indexes[k]]
|
|
score = clipwise_output[0][sorted_indexes[k]]
|
|
tags.append(tag)
|
|
scores.append(round(score, 4))
|
|
|
|
return tags, scores, embedding.squeeze(0)
|
|
|
|
def int2float(self, wav: numpy.ndarray, dtype: str = 'float64'):
|
|
"""
|
|
Convert audio data from int to float.
|
|
The input dtype must be integers.
|
|
The output dtype is controlled by the parameter `dtype`, defaults to 'float64'.
|
|
|
|
The code is inspired by https://github.com/mgeier/python-audio/blob/master/audio-files/utility.py
|
|
"""
|
|
dtype = numpy.dtype(dtype)
|
|
assert dtype.kind == 'f'
|
|
if wav.dtype.kind in 'iu':
|
|
ii = numpy.iinfo(wav.dtype)
|
|
abs_max = 2 ** (ii.bits - 1)
|
|
offset = ii.min + abs_max
|
|
return (wav.astype(dtype) - offset) / abs_max
|
|
else:
|
|
return wav.astype(dtype)
|