logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

81 lines
3.3 KiB

# Audio Embedding with CLMR
*Author: [Jael Gu](https://github.com/jaelgu)*
<br />
## Description
The audio embedding operator converts an input audio into a dense vector which can be used to represent the audio clip's semantics.
Each vector represents for an audio clip with a fixed length of around 2s.
This operator is built on top of the original implementation of [CLMR](https://github.com/Spijkervet/CLMR).
The [default model weight](clmr_checkpoint_10000.pt) provided is pretrained on [Magnatagatune Dataset](https://paperswithcode.com/dataset/magnatagatune) with [SampleCNN](sample_cnn.py).
<br />
## Code Example
Generate embeddings for the audio "test.wav".
*Write a pipeline with explicit inputs/outputs name specifications:*
```python
from towhee import pipe, ops, DataCollection
p = (
pipe.input('path')
.map('path', 'frame', ops.audio_decode.ffmpeg())
.map('frame', 'vecs', ops.audio_embedding.clmr())
.output('path', 'vecs')
)
DataCollection(p('./test.wav')).show()
```
<img src="./result.png" width="800px"/>
<br />
## Factory Constructor
Create the operator via the following factory method
***audio_embedding.clmr(framework="pytorch")***
**Parameters:**
*framework: str*
The framework of model implementation.
Default value is "pytorch" since the model is implemented in Pytorch.
<br />
## Interface
An audio embedding operator generates vectors in numpy.ndarray given towhee audio frames.
**Parameters:**
*data: List[towhee.types.audio_frame.AudioFrame]*
Input audio data is a list of towhee audio frames.
The input data should represent for an audio longer than 3s.
**Returns**:
*numpy.ndarray*
3 years ago
Audio embeddings in shape (num_clips, 512).
Each embedding stands for features of an audio clip with length of 2.7s.
# More Resources
- [How to Get the Right Vector Embeddings - Zilliz blog](https://zilliz.com/blog/how-to-get-the-right-vector-embeddings): A comprehensive introduction to vector embeddings and how to generate them with popular open-source models.
- [Audio Retrieval Based on Milvus - Zilliz blog](https://zilliz.com/blog/audio-retrieval-based-on-milvus): Create an audio retrieval system using Milvus, an open-source vector database. Classify and analyze sound data in real time.
- [Vector Database Use Case: Audio Similarity Search - Zilliz](https://zilliz.com/vector-database-use-cases/audio-similarity-search): Building agile and reliable audio similarity search with Zilliz vector database (fully managed Milvus).
- [Sparse and Dense Embeddings: A Guide for Effective Information Retrieval with Milvus | Zilliz Webinar](https://zilliz.com/event/sparse-and-dense-embeddings-webinar): Zilliz webinar covering what sparse and dense embeddings are and when you'd want to use one over the other.
- [Sparse and Dense Embeddings: A Guide for Effective Information Retrieval with Milvus | Zilliz Webinar](https://zilliz.com/event/sparse-and-dense-embeddings-webinar/success): Zilliz webinar covering what sparse and dense embeddings are and when you'd want to use one over the other.
- [An Introduction to Vector Embeddings: What They Are and How to Use Them - Zilliz blog](https://zilliz.com/learn/everything-you-should-know-about-vector-embeddings): In this blog post, we will understand the concept of vector embeddings and explore its applications, best practices, and tools for working with embeddings.