logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

138 lines
4.7 KiB

# Copyright 2021 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Copyright 2021 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import logging
from pathlib import Path
from typing import List
import resampy
import torch
import numpy
from towhee.operator import NNOperator
from towhee import register
from towhee.types.audio_frame import AudioFrame
sys.path.append(str(Path(__file__).parent))
from clmr_checkpoint import load_encoder_checkpoint
from sample_cnn import SampleCNN
log = logging.getLogger()
@register(output_schema=['vecs'])
class ClmrMagnatagatune(NNOperator):
"""
Pretrained clmr
"""
def __init__(self, framework="pytorch") -> None:
super().__init__(framework=framework)
self.device = "cuda" if torch.cuda.is_available() else "cpu"
weight_path = os.path.join(str(Path(__file__).parent),
'clmr_checkpoint_10000.pt')
state_dict = load_encoder_checkpoint(weight_path, 1)
encoder = SampleCNN(strides=[3, 3, 3, 3, 3, 3, 3, 3, 3], supervised=False, out_dim=1)
encoder.load_state_dict(state_dict)
new_encoder = torch.nn.Sequential(*(list(encoder.children())[:-1]))
x = list(new_encoder[0][:10].children())
y = torch.nn.Sequential(*list(new_encoder[0][10].children())[:-1])
x.append(y)
self.model = torch.nn.Sequential(*x)
self.model.eval()
self.model.to(self.device)
def __call__(self, data: List[AudioFrame]) -> numpy.ndarray:
audio_tensors = self.preprocess(data).to(self.device)
features = self.model(audio_tensors)
outs = features.to("cpu")
return outs.detach().numpy()
def __call__(self, data: List[AudioFrame]) -> numpy.ndarray:
_sr = 22050
audio_length = 59049
sr = data[0].sample_rate
layout = data[0].layout
if layout == 'stereo':
frames = [frame.reshape(-1, 2) for frame in data]
audio = numpy.vstack(frames).transpose()
# audio = numpy.mean(audio, axis=0)
# audio = numpy.expand_dims(audio, 0)
else:
audio = numpy.hstack(data)
audio = numpy.expand_dims(audio, 0)
audio = self.int2float(audio).astype('float32')
if sr != _sr:
audio = resampy.resample(audio, sr, _sr)
with torch.no_grad():
audio = torch.from_numpy(audio)
batch = torch.split(audio, audio_length, dim=1)
batch = torch.cat(batch[:-1])
batch = batch.unsqueeze(dim=1)
batch = batch.to(self.device)
features = numpy.squeeze(self.model(batch))
return features.to('cpu').detach().numpy()
def int2float(self, wav: numpy.ndarray, dtype: str = 'float64'):
"""
Convert audio data from int to float.
The input dtype must be integers.
The output dtype is controlled by the parameter `dtype`, defaults to 'float64'.
The code is inspired by https://github.com/mgeier/python-audio/blob/master/audio-files/utility.py
"""
dtype = numpy.dtype(dtype)
assert dtype.kind == 'f'
if wav.dtype.kind in 'iu':
ii = numpy.iinfo(wav.dtype)
abs_max = 2 ** (ii.bits - 1)
offset = ii.min + abs_max
return (wav.astype(dtype) - offset) / abs_max
else:
return wav.astype(dtype)
# if __name__ == "__main__":
# encoder = ClmrMagnatagatune()
#
# # audio_path = "/audio/path/or/link"
# # vec = encoder(audio_path)
#
# audio_data = numpy.zeros((2, 441344))
# sample_rate = 44100
# vec = encoder(audio_data, sample_rate)
#
# print(vec.shape)