logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

96 lines
3.0 KiB

# Copyright 2021 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import logging
from pathlib import Path
from typing import Union
import torchaudio
import torch
import numpy
from towhee.operator import NNOperator
from towhee import register
sys.path.append(str(Path(__file__).parent))
from clmr_checkpoint import load_encoder_checkpoint
from sample_cnn import SampleCNN
log = logging.getLogger()
@register(output_schema=['vecs'])
class ClmrMagnatagatune(NNOperator):
"""
Pretrained clmr
"""
def __init__(self, framework="pytorch") -> None:
super().__init__(framework=framework)
self.device = "cuda" if torch.cuda.is_available() else "cpu"
weight_path = os.path.join(str(Path(__file__).parent),
'clmr_checkpoint_10000.pt')
state_dict = load_encoder_checkpoint(weight_path, 1)
encoder = SampleCNN(strides=[3, 3, 3, 3, 3, 3, 3, 3, 3], supervised=False, out_dim=1)
encoder.load_state_dict(state_dict)
new_encoder = torch.nn.Sequential(*(list(encoder.children())[:-1]))
x = list(new_encoder[0][:10].children())
y = torch.nn.Sequential(*list(new_encoder[0][10].children())[:-1])
x.append(y)
self.model = torch.nn.Sequential(*x)
self.model.eval()
self.model.to(self.device)
def __call__(self, audio: Union[str, numpy.ndarray], sample_rate: int = None) -> numpy.ndarray:
_sr = 22050
audio_length = 59049
if isinstance(audio, str):
source = os.path.abspath(audio)
audio, sr = torchaudio.load(source)
elif isinstance(audio, numpy.ndarray):
sr = sample_rate
audio = torch.tensor(audio).to(torch.float32)
if sr != _sr:
transform = torchaudio.transforms.Resample(orig_freq=sr, new_freq=_sr)
audio = transform(audio)
with torch.no_grad():
batch = torch.split(audio, audio_length, dim=1)
batch = torch.cat(batch[:-1])
batch = batch.unsqueeze(dim=1)
batch = batch.to(self.device)
features = numpy.squeeze(self.model(batch))
embeddings = features.to("cpu")
return embeddings.detach().numpy()
# if __name__ == "__main__":
# encoder = ClmrMagnatagatune()
#
# # audio_path = "/audio/path/or/link"
# # vec = encoder(audio_path)
#
# audio_data = numpy.zeros((2, 441344))
# sample_rate = 44100
# vec = encoder(audio_data, sample_rate)
#
# print(vec.shape)