logo
Browse Source

Update README

Signed-off-by: Jael Gu <mengjia.gu@zilliz.com>
main
Jael Gu 2 years ago
parent
commit
ae9d5cb6eb
  1. 5
      README.md

5
README.md

@ -15,7 +15,7 @@ The [default model weight](clmr_checkpoint_10000.pt) provided is pretrained on [
## Code Example ## Code Example
Generate embeddings for the audio "test.wav".
Generate embeddings for the audio "test.wav".
*Write the pipeline in simplified style*: *Write the pipeline in simplified style*:
@ -42,6 +42,7 @@ import towhee
.audio_decode.ffmpeg['path', 'frames']() .audio_decode.ffmpeg['path', 'frames']()
.runas_op['frames', 'frames'](func=lambda x:[y[0] for y in x]) .runas_op['frames', 'frames'](func=lambda x:[y[0] for y in x])
.audio_embedding.clmr['frames', 'vecs']() .audio_embedding.clmr['frames', 'vecs']()
.select['path', 'vecs']()
.show() .show()
) )
``` ```
@ -91,4 +92,4 @@ The input data should represent for an audio longer than 2s.
*numpy.ndarray* *numpy.ndarray*
Audio embeddings in shape (num_clips, 512). Audio embeddings in shape (num_clips, 512).
Each embedding stands for features of an audio clip with length of 2s.
Each embedding stands for features of an audio clip with length of 2s.

Loading…
Cancel
Save