diff --git a/README.md b/README.md
index 6ac0f91..8f2ab36 100644
--- a/README.md
+++ b/README.md
@@ -2,6 +2,7 @@
*Author: Jael Gu*
+
## Desription
@@ -10,34 +11,36 @@ Each vector represents for an audio clip with a fixed length of around 2s.
This operator is built on top of the original implementation of [CLMR](https://github.com/Spijkervet/CLMR).
The [default model weight](clmr_checkpoint_10000.pt) provided is pretrained on [Magnatagatune Dataset](https://paperswithcode.com/dataset/magnatagatune) with [SampleCNN](sample_cnn.py).
+
+
## Code Example
Generate embeddings for the audio "test.wav".
- *Write the pipeline in simplified style*:
+*Write the pipeline in simplified style*:
```python
-from towhee import dc
+import towhee
-dc.glob('test.wav')
- .audio_decode()
- .time_window(range=10)
- .audio_embedding.clmr()
- .show()
+towhee.glob('test.wav') \
+ .audio_decode() \
+ .time_window(range=10) \
+ .audio_embedding.clmr() \
+ .show()
```
| [-2.1045141, 0.55381, 0.4537212, ...] shape=(6, 512) |
*Write a same pipeline with explicit inputs/outputs name specifications:*
```python
-from towhee import dc
-
-dc.glob['path']('test.wav')
- .audio_decode['path', 'audio']()
- .time_window['audio', 'frames'](range=10)
- .audio_embedding.clmr['frames', 'vecs']()
- .select('vecs')
- .to_vec()
+import towhee
+
+towhee.glob['path']('test.wav') \
+ .audio_decode['path', 'audio']() \
+ .time_window['audio', 'frames'](range=10) \
+ .audio_embedding.clmr['frames', 'vecs']() \
+ .select('vecs') \
+ .to_vec()
```
[array([[-2.1045141 , 0.55381 , 0.4537212 , ..., 0.18805158,
0.3079657 , -1.216063 ],
@@ -52,6 +55,8 @@ dc.glob['path']('test.wav')
[-2.0771549 , 0.5641221 , 0.43814805, ..., 0.1822092 ,
0.33022994, -1.2070588 ]], dtype=float32)]
+
+
## Factory Constructor
Create the operator via the following factory method
@@ -60,26 +65,28 @@ Create the operator via the following factory method
**Parameters:**
- *framework: str*
+*framework: str*
- The framework of model implementation.
+The framework of model implementation.
Default value is "pytorch" since the model is implemented in Pytorch.
+
+
## Interface
An audio embedding operator generates vectors in numpy.ndarray given an audio file path or a [towhee audio](link/to/AudioFrame/api/doc).
**Parameters:**
- *Union[str, towhee.types.Audio]*
+*Union[str, towhee.types.Audio (a sub-class of numpy.ndarray]*
- The audio path or link in string.
+The audio path or link in string.
Or audio input data in towhee audio frames.
The input data should represent for an audio longer than 2s.
**Returns**:
- *numpy.ndarray*
+*numpy.ndarray*
- Audio embeddings in shape (num_clips, 512).
+Audio embeddings in shape (num_clips, 512).
Each embedding stands for features of an audio clip with length of 2s.
\ No newline at end of file