# Audio Embedding with CLMR *Author: [Jael Gu](https://github.com/jaelgu)*
## Description The audio embedding operator converts an input audio into a dense vector which can be used to represent the audio clip's semantics. Each vector represents for an audio clip with a fixed length of around 2s. This operator is built on top of the original implementation of [CLMR](https://github.com/Spijkervet/CLMR). The [default model weight](clmr_checkpoint_10000.pt) provided is pretrained on [Magnatagatune Dataset](https://paperswithcode.com/dataset/magnatagatune) with [SampleCNN](sample_cnn.py).
## Code Example Generate embeddings for the audio "test.wav". *Write the pipeline in simplified style*: ```python import towhee ( towhee.glob('test.wav') .audio_decode.ffmpeg() .runas_op(func=lambda x:[y[0] for y in x]) .audio_embedding.clmr() .show() ) ``` | [-2.1045141, 0.55381, 0.4537212, ...] shape=(6, 512) | *Write a same pipeline with explicit inputs/outputs name specifications:* ```python import towhee ( towhee.glob['path']('test.wav') .audio_decode.ffmpeg['path', 'frames']() .runas_op['frames', 'frames'](func=lambda x:[y[0] for y in x]) .audio_embedding.clmr['frames', 'vecs']() .show() ) ``` [array([[-2.1045141 , 0.55381 , 0.4537212 , ..., 0.18805158, 0.3079657 , -1.216063 ], [-2.1045141 , 0.55381036, 0.45372102, ..., 0.18805173, 0.3079657 , -1.216063 ], [-2.0874703 , 0.5511826 , 0.46051833, ..., 0.18650496, 0.33218473, -1.2182183 ], [-2.0874703 , 0.55118287, 0.4605182 , ..., 0.18650502, 0.3321851 , -1.2182183 ], [-2.0771544 , 0.5641223 , 0.43814823, ..., 0.18220925, 0.33022994, -1.2070589 ], [-2.0771549 , 0.5641221 , 0.43814805, ..., 0.1822092 , 0.33022994, -1.2070588 ]], dtype=float32)]
## Factory Constructor Create the operator via the following factory method ***audio_embedding.clmr(framework="pytorch")*** **Parameters:** *framework: str* The framework of model implementation. Default value is "pytorch" since the model is implemented in Pytorch.
## Interface An audio embedding operator generates vectors in numpy.ndarray given towhee audio frames. **Parameters:** *data: List[towhee.types.audio_frame.AudioFrame]* Input audio data is a list of towhee audio frames. The input data should represent for an audio longer than 2s. **Returns**: *numpy.ndarray* Audio embeddings in shape (num_clips, 512). Each embedding stands for features of an audio clip with length of 2s.