import torch import torch.nn as nn from .model import Model class SampleCNN(Model): def __init__(self, strides, supervised, out_dim): super(SampleCNN, self).__init__() self.strides = strides self.supervised = supervised self.sequential = [ nn.Sequential( nn.Conv1d(1, 128, kernel_size=3, stride=3, padding=0), nn.BatchNorm1d(128), nn.ReLU(), ) ] self.hidden = [ [128, 128], [128, 128], [128, 256], [256, 256], [256, 256], [256, 256], [256, 256], [256, 256], [256, 512], ] assert len(self.hidden) == len( self.strides ), "Number of hidden layers and strides are not equal" for stride, (h_in, h_out) in zip(self.strides, self.hidden): self.sequential.append( nn.Sequential( nn.Conv1d(h_in, h_out, kernel_size=stride, stride=1, padding=1), nn.BatchNorm1d(h_out), nn.ReLU(), nn.MaxPool1d(stride, stride=stride), ) ) # 1 x 512 self.sequential.append( nn.Sequential( nn.Conv1d(512, 512, kernel_size=3, stride=1, padding=1), nn.BatchNorm1d(512), nn.ReLU(), ) ) self.sequential = nn.Sequential(*self.sequential) if self.supervised: self.dropout = nn.Dropout(0.5) self.fc = nn.Linear(512, out_dim) def forward(self, x): out = self.sequential(x) if self.supervised: out = self.dropout(out) out = out.reshape(x.shape[0], out.size(1) * out.size(2)) logit = self.fc(out) return logit