logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

Updated 3 years ago

audio-embedding

Audio Embedding with CLMR

Author: Jael Gu

Desription

The audio embedding operator converts an input audio into a dense vector which can be used to represent the audio clip's semantics. This operator is built on top of the original implementation of CLMR. The default model weight provided is pretrained on Magnatagatune Dataset with SampleCNN.

import numpy as np
from towhee import ops

audio_encoder = ops.audio_embedding.clmr()

# Path or url as input
audio_embedding = audio_encoder("/audio/path/or/url/")

# Audio data as input
audio_data = np.zeros((2, 441344))
sample_rate = 44100
audio_embedding = audio_encoder(audio_data, sample_rate)

Factory Constructor

Create the operator via the following factory method

ops.audio_embedding.clmr()

Interface

An audio embedding operator generates vectors in numpy.ndarray given an audio file path or audio data in numpy.ndarray.

Parameters:

​ None.

Returns: numpy.ndarray

​ Audio embeddings.

Code Example

Generate embeddings for the audio "test.wav".

Write the pipeline in simplified style:

from towhee import dc

dc.glob('test.wav')
  .audio_embedding.clmr()
  .show()

Write a same pipeline with explicit inputs/outputs name specifications:

from towhee import dc

dc.glob['path']('test.wav')
  .audio_embedding.clmr['path', 'vecs']()
  .select('vecs')
  .show()
Jael Gu 08265aa33e Update 3 Commits
folder-icon checkpoints Refactor 3 years ago
folder-icon models Refactor 3 years ago
folder-icon utils Refactor 3 years ago
file-icon .gitattributes
1.1 KiB
download-icon
Initial commit 3 years ago
file-icon README.md
1.5 KiB
download-icon
Refactor 3 years ago
file-icon __init__.py
688 B
download-icon
Refactor 3 years ago
file-icon clmr_magnatagatune.py
3.0 KiB
download-icon
Update 3 years ago
file-icon requirements.txt
47 B
download-icon
Refactor 3 years ago