clmr
copied
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions
95 lines
3.0 KiB
95 lines
3.0 KiB
# Copyright 2021 Zilliz. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import os
|
|
import sys
|
|
import logging
|
|
from pathlib import Path
|
|
from typing import Union
|
|
|
|
import subprocess
|
|
import torchaudio
|
|
import torch
|
|
import numpy
|
|
|
|
from towhee.operator import NNOperator
|
|
from towhee import register
|
|
|
|
sys.path.append(str(Path(__file__).parent))
|
|
|
|
from utils.checkpoint import load_encoder_checkpoint
|
|
from models.sample_cnn import SampleCNN
|
|
|
|
|
|
@register(output_schema=['vec'])
|
|
class ClmrMagnatagatune(NNOperator):
|
|
"""
|
|
Pretrained clmr
|
|
"""
|
|
|
|
def __init__(self, framework="pytorch") -> None:
|
|
super().__init__(framework=framework)
|
|
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
weight_path = os.path.join(str(Path(__file__).parent),
|
|
'checkpoints/clmr_checkpoint_10000.pt')
|
|
state_dict = load_encoder_checkpoint(weight_path, 1)
|
|
encoder = SampleCNN(strides=[3, 3, 3, 3, 3, 3, 3, 3, 3], supervised=False, out_dim=1)
|
|
encoder.load_state_dict(state_dict)
|
|
|
|
new_encoder = torch.nn.Sequential(*(list(encoder.children())[:-1]))
|
|
x = list(new_encoder[0][:10].children())
|
|
y = torch.nn.Sequential(*list(new_encoder[0][10].children())[:-1])
|
|
x.append(y)
|
|
self.model = torch.nn.Sequential(*x)
|
|
self.model.eval()
|
|
self.model.to(self.device)
|
|
|
|
def __call__(self, audio: Union[str, numpy.ndarray], sample_rate: int = None) -> numpy.ndarray:
|
|
_sr = 22050
|
|
audio_length = 59049
|
|
|
|
if isinstance(audio, str):
|
|
source = os.path.abspath(audio)
|
|
audio, sr = torchaudio.load(source)
|
|
elif isinstance(audio, numpy.ndarray):
|
|
sr = sample_rate
|
|
audio = torch.tensor(audio).to(torch.float32)
|
|
|
|
if sr != _sr:
|
|
transform = torchaudio.transforms.Resample(orig_freq=sr, new_freq=_sr)
|
|
audio = transform(audio)
|
|
|
|
with torch.no_grad():
|
|
batch = torch.split(audio, audio_length, dim=1)
|
|
batch = torch.cat(batch[:-1])
|
|
batch = batch.unsqueeze(dim=1)
|
|
batch = batch.to(self.device)
|
|
features = numpy.squeeze(self.model(batch))
|
|
|
|
embeddings = features.to("cpu")
|
|
return embeddings.detach().numpy()
|
|
|
|
|
|
# if __name__ == "__main__":
|
|
# encoder = ClmrMagnatagatune()
|
|
#
|
|
# audio_path = "/audio/path/or/link"
|
|
# vec = encoder(audio_path)
|
|
#
|
|
# # audio_data = numpy.zeros((2, 441344))
|
|
# # sample_rate = 44100
|
|
# # vec = encoder(audio_data, sample_rate)
|
|
#
|
|
# print(vec.shape)
|