data2vec
copied
wxywb
3 years ago
2 changed files with 109 additions and 10 deletions
@ -1,2 +1,103 @@ |
|||
# data2vec-audio |
|||
# Audio Embdding with data2vec |
|||
|
|||
*author: David Wang* |
|||
|
|||
|
|||
<br /> |
|||
|
|||
|
|||
|
|||
## Description |
|||
|
|||
This operator extracts features for audio with [data2vec](https://arxiv.org/abs/2202.03555). The core idea is to predict latent representations of the full input data based on a masked view of the input in a self-distillation setup using a standard Transformer architecture. |
|||
|
|||
<br /> |
|||
|
|||
|
|||
## Code Example |
|||
|
|||
Generate embeddings for the audio "test.wav". |
|||
|
|||
|
|||
*Write the pipeline in simplified style*: |
|||
|
|||
```python |
|||
import towhee |
|||
|
|||
( |
|||
towhee.glob('test.wav') |
|||
.audio_decode.ffmpeg() |
|||
.runas_op(func=lambda x:[y[0] for y in x]) |
|||
.towhee.data2vec_audio() |
|||
.show() |
|||
) |
|||
|
|||
``` |
|||
<img src="https://towhee.io/towhee/data2vec-vision/raw/branch/main/result1.png" alt="result1" style="height:20px;"/> |
|||
|
|||
*Write a same pipeline with explicit inputs/outputs name specifications:* |
|||
|
|||
```python |
|||
import towhee |
|||
|
|||
( |
|||
towhee.glob['path']('test.wav') |
|||
.audio_decode.ffmpeg['path', 'frames']() |
|||
.runas_op['frames', 'frames'](func=lambda x:[y[0] for y in x]) |
|||
.towhee.data2vec_audio['frames', 'vecs'](model_name="facebook/data2vec-audio-base-960h") |
|||
.show() |
|||
) |
|||
``` |
|||
<img src="https://towhee.io/towhee/data2vec-vision/raw/branch/main/result2.png" alt="result2" style="height:60px;"/> |
|||
|
|||
|
|||
<br /> |
|||
|
|||
|
|||
|
|||
## Factory Constructor |
|||
|
|||
Create the operator via the following factory method |
|||
|
|||
***data2vec_vision(model_name='facebook/data2vec-vision-base')*** |
|||
|
|||
**Parameters:** |
|||
|
|||
|
|||
***model_name***: *str* |
|||
|
|||
The model name in string. |
|||
The default value is "facebook/data2vec-audio-base-960h". |
|||
|
|||
Supported model name: |
|||
- |
|||
- facebook/data2vec-audio-base-960h |
|||
- facebook/data2vec-audio-large-960h |
|||
- facebook/data2vec-audio-base |
|||
- facebook/data2vec-audio-base-100h |
|||
- facebook/data2vec-audio-base-10m |
|||
- facebook/data2vec-audio-large |
|||
- facebook/data2vec-audio-large-100h |
|||
- facebook/data2vec-audio-large-10m |
|||
|
|||
<br /> |
|||
|
|||
|
|||
|
|||
## Interface |
|||
|
|||
An audio embedding operator generates vectors in numpy.ndarray given an audio file path or towhee audio frames. |
|||
|
|||
|
|||
**Parameters:** |
|||
|
|||
***data:*** *List[towhee.types.audio_frame.AudioFrame]* |
|||
|
|||
Input audio data is a list of towhee audio frames. The input data should represent for an audio longer than 0.9s. |
|||
|
|||
**Returns:** *numpy.ndarray* |
|||
|
|||
The audio embedding extracted by model. |
|||
|
|||
|
|||
|
|||
|
Loading…
Reference in new issue