# Audio Embedding with data2vec *author: David Wang*
## Description This operator extracts features for audio with [data2vec](https://arxiv.org/abs/2202.03555). The core idea is to predict latent representations of the full input data based on a masked view of the input in a self-distillation setup using a standard Transformer architecture.
## Code Example Generate embeddings for the audio "test.wav". *Write a pipeline with explicit inputs/outputs name specifications:* ```python from towhee.dc2 import pipe, ops, DataCollection p = ( pipe.input('path') .map('path', 'frame', ops.audio_decode.ffmpeg(sample_rate=16000)) .map('frame', 'vecs', ops.audio_embedding.data2vec(model_name='facebook/data2vec-audio-base-960h')) .output('path', 'vecs') ) DataCollection(p('test.wav')).show() ```
## Factory Constructor Create the operator via the following factory method ***data2vec(model_name='facebook/data2vec-audio-base')*** **Parameters:** ​ ***model_name***: *str* The model name in string. The default value is "facebook/data2vec-audio-base-960h". Supported model name: - - facebook/data2vec-audio-base-960h - facebook/data2vec-audio-large-960h - facebook/data2vec-audio-base - facebook/data2vec-audio-base-100h - facebook/data2vec-audio-base-10m - facebook/data2vec-audio-large - facebook/data2vec-audio-large-100h - facebook/data2vec-audio-large-10m
## Interface An audio embedding operator generates vectors in numpy.ndarray given an audio file path or towhee audio frames. **Parameters:** ​ ***data:*** *List[towhee.types.audio_frame.AudioFrame]* ​ Input audio data is a list of towhee audio frames. The input data should represent for an audio longer than 0.9s. **Returns:** *numpy.ndarray* ​ The audio embedding extracted by model.