logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

45 lines
990 B

# Inference Performance
## Test Scripts
```python
from towhee import ops
import time
decode = ops.audio_decode.ffmpeg()
audio = [x[0] for x in decode('path/to/test.wav')]
op = ops.audio_embedding.nnfp()
# op = ops.audio_embedding.nnfp(model_path='path/to/torchscript/model.pt')
# op = ops.audio_embedding.nnfp(model_path='path/to/model.onnx')
start = time.time()
for _ in range(100):
embs = op(audio)
assert(embs.shape == (10, 128))
end = time.time()
print((end-start) / 100)
```
## Results
- Device: MacOS, 2.3 GHz Quad-Core Intel Core i7, 8 CPUs
- Input: 10s audio, loop for 100 times
| inference method | mem usage | avg time |
| -- | -- | -- |
| pytorch | 0.3G | 0.451s |
| torchscript | 0.3G | 0.470s |
| onnx | 0.3G | 0.378s |
- Device: MacOS, 2.3 GHz Quad-Core Intel Core i7, 8 CPUs
- Input: 188s audio, loop for 100 times
| inference method | mem usage | avg time |
| -- | -- | -- |
| pytorch | 2.6G | 8.162s |
| torchscript | 2.8G | 7.507s |
| onnx | 1.7G | 6.769s |