diff --git a/README.md b/README.md index c454afc..3cb0a0b 100644 --- a/README.md +++ b/README.md @@ -21,7 +21,7 @@ Generate embeddings for the audio "test.wav". *Write a same pipeline with explicit inputs/outputs name specifications:* -- option 1 (towhee>=0.9.0): +- **option 1 (towhee>=0.9.0):** ```python from towhee.dc2 import pipe, ops, DataCollection @@ -36,7 +36,7 @@ DataCollection(p('test.wav')).show() ``` -- option 2: +- **option 2:** ```python import towhee @@ -55,18 +55,17 @@ import towhee Create the operator via the following factory method -***audio_embedding.nnfp(params=None, model_path=None, framework='pytorch')*** +***audio_embedding.nnfp(model_name='nnfp_default', model_path=None, framework='pytorch')*** **Parameters:** -*params: dict* +*model_name: str* -A dictionary of model parameters. If None, it will use default parameters to create model. +Model name to create nnfp model with different parameters. *model_path: str* The path to model. If None, it will load default model weights. -When the path ends with '.onnx', the operator will use onnx inference. *framework: str* @@ -88,7 +87,6 @@ An audio embedding operator generates vectors in numpy.ndarray given towhee audi Input audio data is a list of towhee audio frames. The audio input should be at least 1s. - **Returns**: *numpy.ndarray* @@ -96,6 +94,7 @@ The audio input should be at least 1s. Audio embeddings in shape (num_clips, 128). Each embedding stands for features of an audio clip with length of 1s. +
***save_model(format='pytorch', path='default')***