# Copyright 2021 Zilliz. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import warnings import os from pathlib import Path from typing import List import torch import numpy import resampy from towhee.operator.base import NNOperator from towhee import register from towhee.types.audio_frame import AudioFrame from towhee.models.nnfp import NNFp from towhee.models.utils.audio_preprocess import preprocess_wav, MelSpec from .configs import default_params warnings.filterwarnings('ignore') log = logging.getLogger() @register(output_schema=['vecs']) class NNFingerprint(NNOperator): """ Audio embedding operator using Neural Network Fingerprint """ def __init__(self, params: dict = None, checkpoint_path: str = None, framework: str = 'pytorch'): super().__init__(framework=framework) self.device = "cuda" if torch.cuda.is_available() else "cpu" if params is None: self.params = default_params else: self.params = params dim = self.params['dim'] h = self.params['h'] u = self.params['u'] f_bin = self.params['n_mels'] n_seg = int(self.params['segment_size'] * self.params['sample_rate']) t = (n_seg + self.params['hop_length'] - 1) // self.params['hop_length'] log.info('Creating model...') self.model = NNFp( dim=dim, h=h, u=u, in_f=f_bin, in_t=t, fuller=self.params['fuller'], activation=self.params['activation'] ).to(self.device) log.info('Loading weights...') if checkpoint_path is None: path = str(Path(__file__).parent) checkpoint_path = os.path.join(path, 'saved_model', 'pfann_fma_m.pt') state_dict = torch.load(checkpoint_path, map_location=self.device) self.model.load_state_dict(state_dict) self.model.eval() log.info('Model is loaded.') def __call__(self, data: List[AudioFrame]) -> numpy.ndarray: audio_tensors = self.preprocess(data).to(self.device) features = self.model(audio_tensors) return features.detach().cpu().numpy() def preprocess(self, frames: List[AudioFrame]): sr = frames[0].sample_rate layout = frames[0].layout if layout == 'stereo': frames = [frame.reshape(-1, 2) for frame in frames] audio = numpy.vstack(frames).transpose() else: audio = numpy.hstack(frames) audio = audio[None, :] audio = self.int2float(audio) if sr != self.params['sample_rate']: audio = resampy.resample(audio, sr, self.params['sample_rate']) wav = preprocess_wav(audio, segment_size=int(self.params['sample_rate'] * self.params['segment_size']), hop_size=int(self.params['sample_rate'] * self.params['hop_size']), frame_shift_mul=self.params['frame_shift_mul']).to(self.device) wav = wav.to(torch.float32) mel = MelSpec(sample_rate=self.params['sample_rate'], window_length=self.params['window_length'], hop_length=self.params['hop_length'], f_min=self.params['f_min'], f_max=self.params['f_max'], n_mels=self.params['n_mels'], naf_mode=self.params['naf_mode'], mel_log=self.params['mel_log'], spec_norm=self.params['spec_norm']).to(self.device) wav = mel(wav) return wav @staticmethod def int2float(wav: numpy.ndarray, dtype: str = 'float64'): """ Convert audio imgs from int to float. The input dtype must be integers. The output dtype is controlled by the parameter `dtype`, defaults to 'float64'. The code is inspired by https://github.com/mgeier/python-audio/blob/master/audio-files/utility.py """ dtype = numpy.dtype(dtype) assert dtype.kind == 'f' if wav.dtype.kind in 'iu': ii = numpy.iinfo(wav.dtype) abs_max = 2 ** (ii.bits - 1) offset = ii.min + abs_max return (wav.astype(dtype) - offset) / abs_max else: log.warning('Converting float dtype from %s to %s.', wav.dtype, dtype) return wav.astype(dtype)