# Inference Performance ## Test Scripts ```python from towhee import ops import time decode = ops.audio_decode.ffmpeg() audio = [x[0] for x in decode('path/to/test.wav')] op = ops.audio_embedding.nnfp() # op = ops.audio_embedding.nnfp(model_path='path/to/torchscript/model.pt') # op = ops.audio_embedding.nnfp(model_path='path/to/model.onnx') start = time.time() for _ in range(100): embs = op(audio) assert(embs.shape == (10, 128)) end = time.time() print((end-start) / 100) ``` ## Results - Device: MacOS, 2.3 GHz Quad-Core Intel Core i7, 8 CPUs - Input: 10s audio, loop for 100 times | inference method | mem usage | avg time | | -- | -- | -- | | pytorch | 0.3G | 0.451s | | torchscript | 0.3G | 0.470s | | onnx | 0.3G | 0.378s | - Device: MacOS, 2.3 GHz Quad-Core Intel Core i7, 8 CPUs - Input: 188s audio, loop for 100 times | inference method | mem usage | avg time | | -- | -- | -- | | pytorch | 2.6G | 8.162s | | torchscript | 2.8G | 7.507s | | onnx | 1.7G | 6.769s |