# Audio Embedding with Neural Network Fingerprint *Author: [Jael Gu](https://github.com/jaelgu)*
## Description The audio embedding operator converts an input audio into a dense vector which can be used to represent the audio clip's semantics. Each vector represents for an audio clip with a fixed length of around 1s. This operator generates audio embeddings with fingerprinting method introduced by [Neural Audio Fingerprint](https://arxiv.org/abs/2010.11910). The model is implemented in Pytorch. We've also trained the nnfp model with [FMA dataset](https://github.com/mdeff/fma) (& some noise audio) and shared weights in this operator. The nnfp operator is suitable for audio fingerprinting.
## Code Example Generate embeddings for the audio "test.wav". *Write the pipeline in simplified style*: ```python import towhee ( towhee.glob('test.wav') .audio_decode.ffmpeg() .runas_op(func=lambda x:[y[0] for y in x]) .audio_embedding.nnfp() # use default model .show() ) ``` *Write a same pipeline with explicit inputs/outputs name specifications:* ```python import towhee ( towhee.glob['path']('test.wav') .audio_decode.ffmpeg['path', 'frames']() .runas_op['frames', 'frames'](func=lambda x:[y[0] for y in x]) .audio_embedding.nnfp['frames', 'vecs']() .select['path', 'vecs']() .show() ) ```
## Factory Constructor Create the operator via the following factory method ***audio_embedding.nnfp(params=None, model_path=None, framework='pytorch')*** **Parameters:** *params: dict* A dictionary of model parameters. If None, it will use default parameters to create model. *model_path: str* The path to model. If None, it will load default model weights. When the path ends with '.onnx', the operator will use onnx inference. *framework: str* The framework of model implementation. Default value is "pytorch" since the model is implemented in Pytorch.
## Interface An audio embedding operator generates vectors in numpy.ndarray given towhee audio frames. ***\_\_call\_\_(data)*** **Parameters:** *data: List[towhee.types.audio_frame.AudioFrame]* Input audio data is a list of towhee audio frames. The audio input should be at least 1s. **Returns**: *numpy.ndarray* Audio embeddings in shape (num_clips, 128). Each embedding stands for features of an audio clip with length of 1s. ***save_model(format='pytorch', path='default')*** **Parameters:** *format: str* Format used to save model, defaults to 'pytorch'. Accepted formats: 'pytorch', 'torchscript, 'onnx', 'tensorrt' (in progress) *path: str* Path to save model, defaults to 'default'. The default path is under 'saved' in the same directory of operator cache. ```python from towhee import ops op = ops.audio_embedding.nnfp(device='cpu').get_op() op.save_model('onnx', 'test.onnx') ``` PosixPath('/Home/.towhee/operators/audio-embedding/nnfp/main/test.onnx')