You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Inference Performance
Test Scripts
from towhee import ops
import time
decode = ops.audio_decode.ffmpeg()
audio = [x[0] for x in decode('path/to/test.wav')]
op = ops.audio_embedding.nnfp()
# op = ops.audio_embedding.nnfp(model_path='path/to/torchscript/model.pt')
# op = ops.audio_embedding.nnfp(model_path='path/to/model.onnx')
start = time.time()
for _ in range(100):
embs = op(audio)
assert(embs.shape == (10, 128))
end = time.time()
print((end-start) / 100)
Performance (Default model)
- Device: MacOS, 2.3 GHz Quad-Core Intel Core i7, 8 CPUs
- Input: 10s mono audio, shape (1, ), sr , loop for 100 times
inference method |
mem usage |
avg time |
pytorch |
0.3G |
0.451s |
torchscript |
0.3G |
0.470s |
onnx |
0.3G |
0.378s |
- Device: MacOS, 2.3 GHz Quad-Core Intel Core i7, 8 CPUs
- Input: 188s stereo audio, shape (2, 8328408), sr 44100, loop for 100 times
inference method |
mem usage |
avg time |
pytorch |
2.6G |
8.162s |
torchscript |
2.8G |
7.507s |
onnx |
1.7G |
6.769s |
- Device: MacOS, 2.3 GHz Quad-Core Intel Core i7, 8 CPUs
- Input: 600s stereo audio, shape (2, 28800000), sr 48000, loop for 20 times
inference method |
mem usage |
avg time |
pytorch |
5G |
22.540s |
torchscript |
4.9G |
22.514s |
onnx |
3.4G |
17.874s |
Performance (Distilled model)
- Device: MacOS, 2.3 GHz Quad-Core Intel Core i7, 8 CPUs
- Input: 188s stereo audio, shape (2, 8328408), sr 44100, loop for 20 times
inference method |
mem usage |
avg time |
pytorch |
2.6G |
7.215s |
torchscript |
2.8G |
7.220s |
onnx |
1G |
6.410s |
- Device: MacOS, 2.3 GHz Quad-Core Intel Core i7, 8 CPUs
- Input: 600s stereo audio, shape (2, 28800000), sr 48000, loop for 20 times
inference method |
mem usage |
avg time |
pytorch |
4.9G |
22.482s |
torchscript |
5.1G |
21.511s |
onnx |
3.4G |
17.709s |