logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

1.3 KiB

Inference Performance

Test Scripts

from towhee import ops
import time

decode = ops.audio_decode.ffmpeg()
audio = [x[0] for x in decode('path/to/test.wav')]

op = ops.audio_embedding.nnfp()
# op = ops.audio_embedding.nnfp(model_path='path/to/torchscript/model.pt')
# op = ops.audio_embedding.nnfp(model_path='path/to/model.onnx')


start = time.time()
for _ in range(100):
	embs = op(audio)
	assert(embs.shape == (10, 128))
end = time.time()

print((end-start) / 100)

Performance (Default model)

  • Device: MacOS, 2.3 GHz Quad-Core Intel Core i7, 8 CPUs
  • Input: 10s stereo audio, shape (2, 441344), sr 44100, loop for 100 times
inference method mem usage avg time
pytorch 0.3G 0.160s
torchscript 0.3G 0.167s
onnx 0.4G 0.093s
  • Device: MacOS, 2.3 GHz Quad-Core Intel Core i7, 8 CPUs
  • Input: 188s stereo audio, shape (2, 8328408), sr 44100, loop for 100 times
inference method mem usage avg time
pytorch 2.7G 2.29s
torchscript 2.5G 2.30s
onnx 1.3G 1.77s
  • Device: MacOS, 2.3 GHz Quad-Core Intel Core i7, 8 CPUs
  • Input: 600s mono audio, shape (1, 9600000), sr 16000, loop for 20 times
inference method mem usage avg time
pytorch 4.9G 9.04s
torchscript 4.9G 9.302s
onnx 2.7G 4.586s