logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

233 lines
9.5 KiB

# Copyright 2021 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import warnings
import os
from pathlib import Path
from typing import List, Union
import torch
import torchaudio
import numpy
from towhee.operator.base import NNOperator
from towhee import register
from towhee.types.audio_frame import AudioFrame
from towhee.models.nnfp import NNFp
from towhee.models.utils.audio_preprocess import preprocess_wav, MelSpec
from .configs import default_params, hop25_params, distill_params
warnings.filterwarnings('ignore')
log = logging.getLogger()
@register(output_schema=['vecs'])
class NNFingerprint(NNOperator):
"""
Audio embedding operator using Neural Network Fingerprint
"""
def __init__(self,
model_name: str = 'nnfp_default',
model_path: str = None,
framework: str = 'pytorch',
device: str = None
):
super().__init__(framework=framework)
if device is None:
device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.device = device
if model_name == 'nnfp_default':
self.params = default_params
elif model_name == 'nnfp_hop25':
self.params = hop25_params
elif model_name == 'nnfp_distill':
self.params == distill_params
else:
raise ValueError('Invalid model name. Accept value from ["nnfp_default", "nnfp_hop25", "nnfp_distill"]')
log.info('Loading model...')
if model_path is None:
path = str(Path(__file__).parent)
model_path = os.path.join(path, 'saved_model', 'nnfp_fma.pt')
if model_path.endswith('.onnx'):
log.warning('Using onnx.')
import onnxruntime
self.model = onnxruntime.InferenceSession(
model_path,
providers=['CPUExecutionProvider'] if self.device == 'cpu' else ['CUDAExecutionProvider']
)
else:
try:
state_dict = torch.jit.load(model_path, map_location=self.device)
except Exception:
state_dict = torch.load(model_path, map_location=self.device)
if isinstance(state_dict, torch.nn.Module):
self.model = state_dict
else:
dim = self.params['dim']
h = self.params['h']
u = self.params['u']
f_bin = self.params['n_mels']
n_seg = int(self.params['segment_size'] * self.params['sample_rate'])
t = (n_seg + self.params['hop_length'] - 1) // self.params['hop_length']
log.info('Creating model with parameters...')
self.model = NNFp(
dim=dim, h=h, u=u,
in_f=f_bin, in_t=t,
fuller=self.params['fuller'],
activation=self.params['activation']
).to(self.device)
self.model.load_state_dict(state_dict)
self.model.eval()
log.info('Model is loaded.')
def __call__(self, data: Union[str, List[AudioFrame]]) -> numpy.ndarray:
audio_tensors = self.preprocess(data)
if audio_tensors.device != self.device:
audio_tensors = audio_tensors.to(self.device)
# print(audio_tensors.shape)
if isinstance(self.model, onnxruntime.InferenceSession):
audio_numpy = audio_tensors.detach().cpu().numpy() if audio_tensors.requires_grad \
else audio_tensors.cpu().numpy()
ort_inputs = {self.model.get_inputs()[0].name: audio_numpy}
outs = self.model.run(None, ort_inputs)[0]
else:
features = self.model(audio_tensors)
outs = features.detach().cpu().numpy()
return outs
def preprocess(self, frames: Union[str, List[AudioFrame]]):
if isinstance(frames, str):
audio, sr = torchaudio.load(frames)
else:
sr = frames[0].sample_rate
layout = frames[0].layout
if layout == 'stereo':
frames = [frame.reshape(-1, 2) for frame in frames]
audio = numpy.vstack(frames).transpose()
else:
audio = numpy.hstack(frames)
if len(audio.shape) == 1:
audio = audio[None, :]
audio = self.int2float(audio)
audio = torch.from_numpy(audio)
assert len(audio.shape) == 2
if sr != self.params['sample_rate']:
resampler = torchaudio.transforms.Resample(sr, self.params['sample_rate'], dtype=audio.dtype)
audio = resampler(audio)
# import resampy
# audio = audio.detach().cpu().numpy()
# audio = resampy.resample(audio, sr, self.params['sample_rate'])
wav = preprocess_wav(audio,
segment_size=int(self.params['sample_rate'] * self.params['segment_size']),
hop_size=int(self.params['sample_rate'] * self.params['hop_size']),
frame_shift_mul=self.params['frame_shift_mul']).to(self.device)
wav = wav.to(torch.float32)
mel = MelSpec(sample_rate=self.params['sample_rate'],
window_length=self.params['window_length'],
hop_length=self.params['hop_length'],
f_min=self.params['f_min'],
f_max=self.params['f_max'],
n_mels=self.params['n_mels'],
naf_mode=self.params['naf_mode'],
mel_log=self.params['mel_log'],
spec_norm=self.params['spec_norm']).to(self.device)
wav = mel(wav)
return wav
@staticmethod
def int2float(wav: numpy.ndarray, dtype: str = 'float64'):
"""
Convert audio imgs from int to float.
The input dtype must be integers.
The output dtype is controlled by the parameter `dtype`, defaults to 'float64'.
The code is inspired by https://github.com/mgeier/python-audio/blob/master/audio-files/utility.py
"""
dtype = numpy.dtype(dtype)
assert dtype.kind == 'f'
if wav.dtype.kind in 'iu':
# ii = numpy.iinfo(wav.dtype)
# abs_max = 2 ** (ii.bits - 1)
# offset = ii.min + abs_max
# return (wav.astype(dtype) - offset) / abs_max
if wav.dtype != 'int16':
wav = (wav >> 16).astype(numpy.int16)
assert wav.dtype == 'int16'
wav = (wav / 32768.0).astype(dtype)
return wav
else:
log.warning('Converting float dtype from %s to %s.', wav.dtype, dtype)
return wav.astype(dtype)
def save_model(self, format: str = 'pytorch', path: str = 'default'):
if path == 'default':
path = str(Path(__file__).parent)
path = os.path.join(path, 'saved', format)
os.makedirs(path, exist_ok=True)
name = 'nnfp'
path = os.path.join(path, name)
dummy_input = torch.rand(
(1,) + (self.params['n_mels'], self.params['u'])
).to(self.device)
if format == 'pytorch':
path = path + '.pt'
torch.save(self.model, path)
elif format == 'torchscript':
path = path + '.pt'
try:
try:
jit_model = torch.jit.script(self.model)
except Exception:
log.warning(
'Failed to directly export as torchscript.'
'Using dummy input in shape of %s now.', dummy_input.shape)
jit_model = torch.jit.trace(self.model, dummy_input, strict=False)
torch.jit.save(jit_model, path)
except Exception as e:
log.error('Fail to save as torchscript: %s.', e)
raise RuntimeError(f'Fail to save as torchscript: {e}.')
elif format == 'onnx':
path = path + '.onnx'
try:
torch.onnx.export(self.model,
dummy_input,
path,
input_names=['input'],
output_names=['output'],
opset_version=12,
do_constant_folding=True,
dynamic_axes={'input': {0: 'batch_size'},
'output': {0: 'batch_size'}
}
)
except Exception as e:
log.error(f'Fail to save as onnx: {e}.')
raise RuntimeError(f'Fail to save as onnx: {e}.')
# todo: elif format == 'tensorrt':
else:
log.error(f'Unsupported format "{format}".')
def input_schema(self):
return [(AudioFrame, (1024,))]
def output_schema(self):
return [(numpy.ndarray, (-1, self.params['dim']))]