logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

Updated 2 years ago

audio-embedding

Audio Embedding with Neural Network Fingerprint

Author: Jael Gu


Description

The audio embedding operator converts an input audio into a dense vector which can be used to represent the audio clip's semantics. Each vector represents for an audio clip with a fixed length of around 1s. This operator generates audio embeddings with fingerprinting method introduced by Neural Audio Fingerprint. The model is implemented in Pytorch. We've also trained the nnfp model with FMA dataset (& some noise audio) and shared weights in this operator. The nnfp operator is suitable for audio fingerprinting.


Code Example

Generate embeddings for the audio "test.wav".

Write the pipeline in simplified style:

import towhee

(
    towhee.glob('test.wav')
          .audio_decode.ffmpeg()
          .runas_op(func=lambda x:[y[0] for y in x])
          .audio_embedding.nnfp()  # use default model
          .show()
)

Write a same pipeline with explicit inputs/outputs name specifications:

import towhee

(
    towhee.glob['path']('test.wav')
          .audio_decode.ffmpeg['path', 'frames']()
          .runas_op['frames', 'frames'](func=lambda x:[y[0] for y in x])
          .audio_embedding.nnfp['frames', 'vecs']()
          .select['path', 'vecs']()
          .show()
)


Factory Constructor

Create the operator via the following factory method

audio_embedding.nnfp(params=None, model_path=None, framework='pytorch')

Parameters:

params: dict

A dictionary of model parameters. If None, it will use default parameters to create model.

model_path: str

The path to model. If None, it will load default model weights. When the path ends with '.onnx', the operator will use onnx inference.

framework: str

The framework of model implementation. Default value is "pytorch" since the model is implemented in Pytorch.


Interface

An audio embedding operator generates vectors in numpy.ndarray given towhee audio frames.

__call__(data)

Parameters:

data: List[towhee.types.audio_frame.AudioFrame]

Input audio data is a list of towhee audio frames. The audio input should be at least 1s.

Returns:

numpy.ndarray

Audio embeddings in shape (num_clips, 128). Each embedding stands for features of an audio clip with length of 1s.

save_model(format='pytorch', path='default')

Parameters:

format: str

Format used to save model, defaults to 'pytorch'. Accepted formats: 'pytorch', 'torchscript, 'onnx', 'tensorrt' (in progress)

path: str

Path to save model, defaults to 'default'. The default path is under 'saved' in the same directory of operator cache.

Jael Gu ea0313a099 Add providers to onnxruntime 13 Commits
folder-icon saved_model Add files 2 years ago
file-icon .gitattributes
1.1 KiB
download-icon
Initial commit 2 years ago
file-icon README.md
2.8 KiB
download-icon
Update test 2 years ago
file-icon __init__.py
692 B
download-icon
Allow init parameters issue & test save_model 2 years ago
file-icon configs.py
1.0 KiB
download-icon
Add files 2 years ago
file-icon nn_fingerprint.py
8.1 KiB
download-icon
Add providers to onnxruntime 2 years ago
file-icon performance.md
990 B
download-icon
Fix typo 2 years ago
file-icon requirements.txt
47 B
download-icon
Add requirements 2 years ago
file-icon result1.png
3.8 KiB
download-icon
Add files 2 years ago
file-icon result2.png
5.9 KiB
download-icon
Add files 2 years ago
file-icon test.py
1.4 KiB
download-icon
Add providers to onnxruntime 2 years ago