logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

85 lines
2.7 KiB

# Copyright 2021 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import warnings
import os
import sys
import numpy
from pathlib import Path
from typing import Union
import torch
from towhee.operator.base import NNOperator
from towhee.models.vggish.torch_vggish import VGG
from towhee import register
sys.path.append(str(Path(__file__).parent))
import vggish_input
warnings.filterwarnings('ignore')
log = logging.getLogger()
@register(output_schema=['vec'])
class Vggish(NNOperator):
"""
"""
def __init__(self, weights_path: str = None, framework: str = 'pytorch') -> None:
super().__init__(framework=framework)
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.model = VGG()
if not weights_path:
path = str(Path(__file__).parent)
weights_path = os.path.join(path, 'vggish.pth')
state_dict = torch.load(weights_path, map_location=torch.device('cpu'))
self.model.load_state_dict(state_dict)
self.model.eval()
self.model.to(self.device)
def __call__(self, audio: Union[str, numpy.ndarray], sr: int = None) -> numpy.ndarray:
audio_tensors = self.preprocess(audio, sr).to(self.device)
features = self.model(audio_tensors)
outs = features.to("cpu")
return outs.detach().numpy()
def preprocess(self, audio: Union[str, numpy.ndarray], sr: int = None):
if isinstance(audio, str):
audio_tensors = vggish_input.wavfile_to_examples(audio)
elif isinstance(audio, numpy.ndarray):
try:
audio = audio.transpose()
audio_tensors = vggish_input.waveform_to_examples(audio, sr, return_tensor=True)
except Exception as e:
log.error("Fail to load audio data.")
raise e
else:
log.error(f"Invalid input audio: {type(audio)}")
return audio_tensors
# if __name__ == '__main__':
# encoder = Vggish()
#
# # audio_path = '/path/to/audio'
# # vec = encoder(audio_path)
#
# audio_data = numpy.zeros((2, 441344))
# sample_rate = 44100
# vec = encoder(audio_data, sample_rate)
# print(vec)