|
|
|
# Copyright 2021 Zilliz. All rights reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import logging
|
|
|
|
import warnings
|
|
|
|
|
|
|
|
import os
|
|
|
|
import sys
|
|
|
|
import numpy
|
|
|
|
from pathlib import Path
|
|
|
|
from typing import List
|
|
|
|
|
|
|
|
import torch
|
|
|
|
|
|
|
|
from towhee.operator.base import NNOperator
|
|
|
|
from towhee.models.vggish.torch_vggish import VGG
|
|
|
|
from towhee import register
|
|
|
|
from towhee.types.audio_frame import AudioFrame
|
|
|
|
|
|
|
|
sys.path.append(str(Path(__file__).parent))
|
|
|
|
import vggish_input
|
|
|
|
|
|
|
|
warnings.filterwarnings('ignore')
|
|
|
|
log = logging.getLogger()
|
|
|
|
|
|
|
|
|
|
|
|
@register(output_schema=['vec'])
|
|
|
|
class Vggish(NNOperator):
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, weights_path: str = None, framework: str = 'pytorch') -> None:
|
|
|
|
super().__init__(framework=framework)
|
|
|
|
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
self.model = VGG()
|
|
|
|
if not weights_path:
|
|
|
|
path = str(Path(__file__).parent)
|
|
|
|
weights_path = os.path.join(path, 'vggish.pth')
|
|
|
|
state_dict = torch.load(weights_path, map_location=torch.device('cpu'))
|
|
|
|
self.model.load_state_dict(state_dict)
|
|
|
|
self.model.eval()
|
|
|
|
self.model.to(self.device)
|
|
|
|
|
|
|
|
def __call__(self, data: List[AudioFrame]) -> numpy.ndarray:
|
|
|
|
audio_tensors = self.preprocess(data).to(self.device)
|
|
|
|
features = self.model(audio_tensors)
|
|
|
|
outs = features.to("cpu")
|
|
|
|
return outs.detach().numpy()
|
|
|
|
|
|
|
|
def preprocess(self, frames: List[AudioFrame]):
|
|
|
|
sr = frames[0].sample_rate
|
|
|
|
layout = frames[0].layout
|
|
|
|
if layout == 'stereo':
|
|
|
|
frames = [frame.reshape(-1, 2) for frame in frames]
|
|
|
|
audio = numpy.vstack(frames)
|
|
|
|
else:
|
|
|
|
audio = numpy.hstack(frames)
|
|
|
|
audio = audio.transpose()
|
|
|
|
audio = self.int2float(audio)
|
|
|
|
try:
|
|
|
|
audio_tensors = vggish_input.waveform_to_examples(audio, sr, return_tensor=True)
|
|
|
|
return audio_tensors
|
|
|
|
except Exception as e:
|
|
|
|
log.error("Fail to load audio data.")
|
|
|
|
raise e
|
|
|
|
|
|
|
|
def int2float(self, wav: numpy.ndarray, dtype: str = 'float64'):
|
|
|
|
"""
|
|
|
|
Convert audio data from int to float.
|
|
|
|
The input dtype must be integers.
|
|
|
|
The output dtype is controlled by the parameter `dtype`, defaults to 'float64'.
|
|
|
|
|
|
|
|
The code is inspired by https://github.com/mgeier/python-audio/blob/master/audio-files/utility.py
|
|
|
|
"""
|
|
|
|
dtype = numpy.dtype(dtype)
|
|
|
|
assert dtype.kind == 'f'
|
|
|
|
|
|
|
|
if wav.dtype.kind in 'iu':
|
|
|
|
ii = numpy.iinfo(wav.dtype)
|
|
|
|
abs_max = 2 ** (ii.bits - 1)
|
|
|
|
offset = ii.min + abs_max
|
|
|
|
return (wav.astype(dtype) - offset) / abs_max
|
|
|
|
else:
|
|
|
|
log.warning('Converting float dtype from %s to %s.', wav.dtype, dtype)
|
|
|
|
return wav.astype(dtype)
|