# Copyright 2021 Zilliz. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import warnings import os import sys import numpy from pathlib import Path import torch from towhee.operator.base import NNOperator from towhee.models.vggish.torch_vggish import VGG from towhee import register sys.path.append(str(Path(__file__).parent)) import vggish_input warnings.filterwarnings('ignore') log = logging.getLogger() @register(output_schema=['vec']) class Vggish(NNOperator): """ """ def __init__(self, weights_path: str = None, framework: str = 'pytorch') -> None: super().__init__(framework=framework) self.device = "cuda" if torch.cuda.is_available() else "cpu" self.model = VGG() if not weights_path: path = str(Path(__file__).parent) weights_path = os.path.join(path, 'vggish.pth') state_dict = torch.load(weights_path, map_location=torch.device('cpu')) self.model.load_state_dict(state_dict) self.model.eval() self.model.to(self.device) def __call__(self, audio: str) -> numpy.ndarray: audio_tensors = self.preprocess(audio).to(self.device) features = self.model(audio_tensors) outs = features.to("cpu") return outs.detach().numpy() def preprocess(self, audio_path: str): audio_tensors = vggish_input.wavfile_to_examples(audio_path) return audio_tensors # if __name__ == '__main__': # encoder = Vggish() # audio_path = '/path/to/audio/wav' # vec = encoder(audio_path) # print(vec.shape)