# Audio Embedding with Vggish *Author: Jael Gu* ## Desription The audio embedding operator converts an input audio into a dense vector which can be used to represent the audio clip's semantics. Each vector represents for an audio clip with a fixed length of around 0.9s. This operator is built on top of [VGGish](https://github.com/tensorflow/models/tree/master/research/audioset/vggish) with Pytorch. The model is a [VGG](https://arxiv.org/abs/1409.1556) variant pre-trained with a large scale of audio dataset [AudioSet](https://research.google.com/audioset). As suggested, it is suitable to extract features at high level or warm up a larger model. ## Code Example Generate embeddings for the audio "test.wav". *Write the pipeline in simplified style*: ```python from towhee import dc dc.glob('test.wav') .audio_decode() .time_window(range=10) .audio_embedding.vggish() .show() ``` | [-0.4931737, -0.40068552, -0.032327592, ...] shape=(10, 128) | *Write a same pipeline with explicit inputs/outputs name specifications:* ```python from towhee import dc dc.glob['path']('test.wav') .audio_decode['path', 'audio']() .time_window['audio', 'frames'](range=10) .audio_embedding.vggish['frames', 'vecs']() .select('vecs') .to_vec() ``` [array([[-0.4931737 , -0.40068552, -0.03232759, ..., -0.33428153, 0.1333081 , -0.25221825], [-0.49023268, -0.40161428, -0.03255743, ..., -0.33395663, 0.13261834, -0.25324696], [-0.4992406 , -0.39848825, -0.03186834, ..., -0.33684137, 0.13326398, -0.25385314], ..., [-0.49047503, -0.40119144, -0.03144619, ..., -0.33282205, 0.13334712, -0.2520305 ], [-0.48861542, -0.40097567, -0.03173053, ..., -0.33255234, 0.13278192, -0.25157905], [-0.4886143 , -0.40098593, -0.03175077, ..., -0.3325425 , 0.13271847, -0.25159872]], dtype=float32)] ## Factory Constructor Create the operator via the following factory method ***audio_embedding.vggish(weights_path=None, framework="pytorch")*** **Parameters:** ​ *weights_path: str* ​ The path to model weights. If None, it will load default model weights. ​ *framework: str* ​ The framework of model implementation. Default value is "pytorch" since the model is implemented in Pytorch. ## Interface An audio embedding operator generates vectors in numpy.ndarray given an audio file path or a [towhee audio](link/to/AudioFrame/api/doc). **Parameters:** ​ *Union[str, towhee.types.Audio]* ​ The audio path or link in string. Or audio input data in towhee audio frames. The input data should represent for an audio longer than 0.9s. **Returns**: ​ *numpy.ndarray* ​ Audio embeddings in shape (num_clips, 128). Each embedding stands for features of an audio clip with length of 0.9s.