# RetinaFace Face Detection
*author: David Wang*
< br / >
## Description
This operator detects faces in the images by using [RetinaFace ](https://arxiv.org/abs/1905.00641 ) Detector. It will return the bounding box positions and the confidence scores of detected faces. This repository is an adaptation from [biubug6/Pytorch_Retinaface ](https://github.com/biubug6/Pytorch_Retinaface ).
< br / >
## Code Example
Load an image from path './turing.png' and use the pre-trained RetinaFace model to generate face bounding boxes and confidence scores.
*Write a pipeline with explicit inputs/outputs name specifications:*
```python
from towhee.dc2 import pipe, ops, DataCollection
p = (
pipe.input('path')
.map('path', 'img', ops.image_decode())
.map('img', ('bbox','score'), ops.face_detection.retinaface())
.map(('img', 'bbox'),'crop', ops.image_crop())
.output('img', 'crop', 'bbox', 'score')
)
DataCollection(p('turing.png')).show()
```
< img src = "https://towhee.io/face-detection/retinaface/raw/branch/main/result2.jpg" alt = "result2" style = "height:60px;" / >
< br / >
## Factory Constructor
Create the operator via the following factory method:
***face_detection.retinaface()***
< br / >
## Interface
A face detection operator takes an image as input. It generates the bounding box positions and confidence scores in ndarray.
**Parameters:**
** *img:*** *towhee.types.Image (a sub-class of numpy.ndarray)*
the image to detect faces from.
supported types: numpy.ndarray
**Returns:**
*List[(int, int, int, int)]*
The position of the bounding boxes for the faces detected.
*List[float]*
The confidence scores for the face detected in the bounding boxes.