# RetinaFace Face Detection
*author: David Wang*
## Description
This operator detects faces in the images by using [RetinaFace](https://arxiv.org/abs/1905.00641) Detector. It will return the bounding box positions and the confidence scores of detected faces. This repo is an adaptaion from [biubug6/Pytorch_Retinaface](https://github.com/biubug6/Pytorch_Retinaface).
## Code Example
Load an image from path './turing.png' and use the pretrained RetinaFace model to generate face bounding boxes and confidence scores.
*Write the pipeline in simplified style:*
```python
import towhee
towhee.glob('turing.png') \
.image_decode.cv2() \
.face_detection.retinaface() \
.show()
```
*Write a same pipeline with explicit inputs/outputs name specifications:*
```python
import towhee
towhee.glob['path']('turing.png') \
.image_decode.cv2['path', 'img']() \
.face_detection.retinaface['img', ('bbox','score')]() \
.select['img', 'bbox', 'score']() \
.show()
```
## Factory Constructor
Create the operator via the following factory method.
***face_detection.retinaface()***
## Interface
A face detection operator takes an image as input. It generates the bounding box positions and confidence scores back to ndarray.
**Parameters:**
***img:*** *towhee.types.Image (a sub-class of numpy.ndarray)*
the image to detect faces.
supported types: numpy.ndarray
**Returns:**
*List[(int, int, int, int)]*
The detected face bounding boxes.
*List[float]*
The detected face bounding boxes confident scores.