# RetinaFace Face Detection *author: David Wang*
## Description This operator detects faces in the images by using [RetinaFace](https://arxiv.org/abs/1905.00641) Detector. It will return the bounding box positions and the confidence scores of detected faces. This repository is an adaptation from [biubug6/Pytorch_Retinaface](https://github.com/biubug6/Pytorch_Retinaface).
## Code Example Load an image from path './turing.png' and use the pre-trained RetinaFace model to generate face bounding boxes and confidence scores. *Write a pipeline with explicit inputs/outputs name specifications:* ```python from towhee.dc2 import pipe, ops, DataCollection p = ( pipe.input('path') .map('path', 'img', ops.image_decode()) .map('img', ('bbox','score'), ops.face_detection.retinaface()) .map(('img', 'bbox'),'crop', ops.image_crop()) .output('img', 'crop', 'bbox', 'score') ) DataCollection(p('turing.png')).show() ``` result2
## Factory Constructor Create the operator via the following factory method: ***face_detection.retinaface()***
## Interface A face detection operator takes an image as input. It generates the bounding box positions and confidence scores in ndarray. **Parameters:** ​ ***img:*** *towhee.types.Image (a sub-class of numpy.ndarray)* ​ the image to detect faces from. ​ supported types: numpy.ndarray **Returns:** *List[(int, int, int, int)]* ​ The position of the bounding boxes for the faces detected. *List[float]* ​ The confidence scores for the face detected in the bounding boxes.