# Retinaface Face Detection (Pytorch) *Authors: David Wang* ## Desription This opertator detects faces in the images by using RetinaFace Detector[1]. It will returns the bounding box positions and the confidence scores of detected faces. This repo is a adopataion from [2]. ```python from towhee import ops model = ops.face_detection.retinaface() embedding = model(img) ``` ## Factory Constructor Create the operator via the following factory method ***ops.face_detection.retinaface()*** ## Interface A face detection operator takes an image as input. it generates the bounding box position and confidence score back to ndarray. **Args:** ​ ***framework*** ​ the framework of the model ​ supported types: `str`, default is 'pytorch' **Parameters:** ​ ***image*** ​ the image to detect faces. ​ supported types: numpy.ndarray **Returns:**: *numpy.ndarray* ​ The detected face bounding boxes. *numpy.ndarray* ​ The detected face bounding boxes confident scores. ## Code Example get detected face bounding boxes from './img1.jpg'. *Write the pipeline in simplified style*: ```python import towhee.DataCollection as dc dc.glob('./img1.jpg') .image_decode.cv2() .face_detection.retinaface() .to_list() ``` *Write a same pipeline with explicit inputs/outputs name specifications:* ```python import towhee.DataCollection as dc dc.glob['path']('./img1.jpg') .image_decode.cv2['path', 'img']() .face_detection.retinaface() .to_list() ``` ## Reference [1]. https://arxiv.org/abs/1905.00641 [2]. https://github.com/biubug6/Pytorch_Retinaface