copied
Readme
Files and versions
Updated 3 years ago
face-detection
RetinaFace Face Detection
Authors: David Wang
Desription
This operator detects faces in the images by using RetinaFace Detector. It will return the bounding box positions and the confidence scores of detected faces. This repo is a adapataion from repo.
Code Example
Load an image from path './dog.jpg' and use the pretrained RetinaFace to generate face bounding boxes.
Write the pipeline in simplified style:
import towhee
towhee.glob('turing.png') \
.image_decode.cv2() \
.face_detection.retinaface() \
.show()
Write a same pipeline with explicit inputs/outputs name specifications:
import towhee
towhee.glob['path']('turing.png') \
.image_decode.cv2['path', 'img']() \
.face_detection.retinaface['img', ('bbox','score')]() \
.select('img', 'bbox', 'score').show()
Factory Constructor
Create the operator via the following factory method.
ops.face_detection.retinaface()
Interface
A face detection operator takes an image as input. it generates the bounding box positions and confidence scores back to ndarray.
Parameters:
image: numpy.ndarray.
the image to detect faces.
supported types: numpy.ndarray
Returns:
numpy.ndarray
The detected face bounding boxes.
numpy.ndarray
The detected face bounding boxes confident scores.
wxywb
1b22aa6a91
| 5 Commits | ||
---|---|---|---|
.gitattributes |
1.1 KiB
|
3 years ago | |
README.md |
1.7 KiB
|
3 years ago | |
__init__.py |
672 B
|
3 years ago | |
pytorch_retinaface_mobilenet_widerface.pth |
1.7 MiB
|
3 years ago | |
requirements.txt |
5 B
|
3 years ago | |
result1.png |
14 KiB
|
3 years ago | |
result2.png |
116 KiB
|
3 years ago | |
retinaface.py |
1.5 KiB
|
3 years ago | |
retinaface_impl.py |
1.4 KiB
|
3 years ago |