copied
Readme
Files and versions
Updated 3 years ago
face-detection
RetinaFace Face Detection
Authors: David Wang
Desription
This operator detects faces in the images by using RetinaFace Detector. It will return the bounding box positions and the confidence scores of detected faces. This repo is an adaptaion from biubug6/Pytorch_Retinaface.
Code Example
Load an image from path './turing.png' and use the pretrained RetinaFace model to generate face bounding boxes and confidence scores.
Write the pipeline in simplified style:
import towhee
towhee.glob('turing.png') \
.image_decode.cv2() \
.face_detection.retinaface() \
.show()
Write a same pipeline with explicit inputs/outputs name specifications:
import towhee
towhee.glob['path']('turing.png') \
.image_decode.cv2['path', 'img']() \
.face_detection.retinaface['img', ('bbox','score')]() \
.select('img', 'bbox', 'score') \
.show()
Factory Constructor
Create the operator via the following factory method.
face_detection.retinaface()
Interface
A face detection operator takes an image as input. It generates the bounding box positions and confidence scores back to ndarray.
Parameters:
img: towhee.types.Image (a sub-class of numpy.ndarray)
the image to detect faces.
supported types: numpy.ndarray
Returns:
List[(int, int, int, int)]
The detected face bounding boxes.
List[float]
The detected face bounding boxes confident scores.
wxywb
66b3cafe4e
| 8 Commits | ||
---|---|---|---|
.DS_Store |
6.0 KiB
|
3 years ago | |
.gitattributes |
1.1 KiB
|
3 years ago | |
README.md |
1.7 KiB
|
3 years ago | |
__init__.py |
672 B
|
3 years ago | |
pytorch_retinaface_mobilenet_widerface.pth |
1.7 MiB
|
3 years ago | |
requirements.txt |
5 B
|
3 years ago | |
result1.png |
15 KiB
|
3 years ago | |
result2.png |
123 KiB
|
3 years ago | |
retinaface.py |
1.6 KiB
|
3 years ago | |
retinaface_impl.py |
1.4 KiB
|
3 years ago |