logo
Browse Source

refactor to new standard.

Signed-off-by: wxywb <xy.wang@zilliz.com>
main
wxywb 3 years ago
parent
commit
1af989f148
  1. BIN
      .README.md.swp
  2. 68
      README.md
  3. 26
      __init__.py
  4. 63
      inceptionresnetv1.py
  5. 5
      requirements.txt
  6. BIN
      result.png

BIN
.README.md.swp

Binary file not shown.

68
README.md

@ -1,2 +1,68 @@
# inceptionresnetv1
# Inception-ResNet v1 Face Embedding Operator
*author: David Wang*
## Desription
This operator extracts embedding vector from facial image using [Inception-ResNet](https://arxiv.org/pdf/1602.07261.pdf). The implementation is an adaptation from [timesler/facenet-pytorch](https://github.com/timesler/facenet-pytorch).
## Code Example
Extract face image embedding from './img.png'.
*Write the pipeline in simplified style*:
```python
import towhee
towhee.glob('./img.png') \
.image_decode.cv2() \
.face_embedding.inceptionresnetv1() \
.tolist()
```
*Write a same pipeline with explicit inputs/outputs name specifications:*
```python
import towhee
towhee.glob['path']('./img.png') \
.image_decode.cv2['path', 'img']() \
.face_embedding.inceptionresnetv1['img', 'vec']() \
.select('img','vec') \
.show()
```
<img src="https://towhee.io/face-embedding/inceptionresnetv1/raw/branch/main/result.png" alt="result" style="height:60px;"/>
## Factory Constructor
Create the operator via the following factory method
***face_embedding.inceptionresnetv1(image_size = 160)***
**Parameters:**
***image_size***: *int*
Scaled input image size to extract embedding. The higher resolution would generate the more discriminateive feature but cost more time to calculate.
supported types: `int`, default is 160.
## Interface
A face embedding operator takes a face image as input. It extracts the embedding back to ndarray.
**Parameters:**
***img***: *towhee.types.Image (a sub-class of numpy.ndarray)*
​ The input image.
**Returns**: *numpy.ndarray*
​ The extracted image embedding.

26
__init__.py

@ -0,0 +1,26 @@
# Copyright 2021 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# import os
# # For requirements.
# try:
# import efficientnet_pytorch
# except ModuleNotFoundError:
# os.system('pip install efficientnet_pytorch')
from .inceptionresnetv1 import Inceptionresnetv1
def inceptionresnetv1(image_size = 160 ):
return Inceptionresnetv1(image_size)

63
inceptionresnetv1.py

@ -0,0 +1,63 @@
# Copyright 2021 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import NamedTuple
import numpy as np
import torch
import cv2
from facenet_pytorch import InceptionResnetV1
from towhee import register
from towhee.operator import NNOperator
from towhee.types.image_utils import to_pil
from towhee._types import Image
from towhee.types import arg, to_image_color
@register(output_schema=['vec'])
class Inceptionresnetv1(NNOperator):
"""
comment placeholder
"""
def __init__(self, image_size = 160):
self.image_size = image_size
self._model = InceptionResnetV1(pretrained='vggface2')
self._model.eval()
@arg(1, to_image_color('RGB') )
def __call__(self, img: Image) -> np.ndarray:
img = self.preprocess(img)
embs = self._model(torch.FloatTensor(img).permute(0,3,1,2)).detach().numpy()
return embs
def preprocess(self, img: Image):
#img shape expected to be [n, h, w, c=3] or [h, w, c=3].
if len(img.shape) == 3:
img = cv2.resize(img, (self.image_size, self.image_size))
img = np.expand_dims(img, 0)
elif len(img.shape) == 4:
pass
else:
raise ValueError('unknown tensor shape, need to be [n, h, w, c=3] or [h, w, c=3].')
img = self._fixed_image_standardization(img)
return img
def _fixed_image_standardization(self, image_tensor):
processed_tensor = (image_tensor - 127.5) / 128.0
return processed_tensor
def train(self):
"""
For training model
"""
pass

5
requirements.txt

@ -0,0 +1,5 @@
opencv-python>=4.1.2
torch>=1.7.0
torchvision>=0.8.1
numpy
facenet-pytorch>=2.5.2

BIN
result.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 110 KiB

Loading…
Cancel
Save